Role of vascular endothelium and exosomes in cancer progression and therapy (Review)
- Authors:
- Yonghao Dai
- Yutong Yao
- Yuquan He
- Xin Hu
-
Affiliations: Department of Cardiology, China‑Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin 130033, P.R. China - Published online on: November 29, 2024 https://doi.org/10.3892/ijo.2024.5712
- Article Number: 6
-
Copyright: © Dai et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Kamrani A, Hosseinzadeh R, Shomali N, Heris JA, Shahabi P, Mohammadinasab R, Sadeghvand S, Ghahremanzadeh K, Sadeghi M and Akbari M: New immunotherapeutic approaches for cancer treatment. Pathol Res Pract. 248:1546322023. View Article : Google Scholar : PubMed/NCBI | |
Ragusa M, Barbagallo C, Cirnigliaro M, Battaglia R, Brex D, Caponnetto A, Barbagallo D, Di Pietro C and Purrello M: Asymmetric RNA distribution among cells and their secreted exosomes: Biomedical meaning and considerations on diagnostic applications. Front Mol Biosci. 4:662027. View Article : Google Scholar | |
Betz C, Lenard A, Belting HG and Affolter M: Cell behaviors and dynamics during angiogenesis. Development. 143:2249–2260. 2016. View Article : Google Scholar : PubMed/NCBI | |
Szekanecz Z and Koch AE: Mechanisms of Disease: Angiogenesis in inflammatory diseases. Nat Clin Pract Rheumatol. 3:635–643. 2007. View Article : Google Scholar : PubMed/NCBI | |
Nachmany I, Bogoch Y, Friedlander-Malik G, Amar O, Bondar E, Zohar N, Hantisteanu S, Fainaru O, Lubezky N, Klausner JM and Pencovich N: The transcriptional profile of circulating myeloid derived suppressor cells correlates with tumor development and progression in mouse. Genes Immun. 20:589–598. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang FT, Sun W, Zhang JT and Fan YZ: Cancer-associated fibroblast regulation of tumor neo-angiogenesis as a therapeutic target in cancer. Oncol Lett. 17:3055–3065. 2019.PubMed/NCBI | |
Gasparics A, Kokeny G, Fintha A, Bencs R, Mozes MM, Agoston EI, Buday A, Ivics Z, Hamar P, Gyorffy B, et al: Alterations in SCAI expression during cell plasticity, fibrosis and cancer. Pathol Oncol Res. 24:641–651. 2018. View Article : Google Scholar | |
Chen X and Song E: Turning foes to friends: Targeting cancer-associated fibroblasts. Nat Rev Drug Discov. 18:99–115. 2019. View Article : Google Scholar | |
Zeisberg EM, Potenta S, Xie L, Zeisberg M and Kalluri R: Discovery of endothelial to mesenchymal transition as a source for carcinoma-associated fibroblasts. Cancer Res. 67:10123–10128. 2007. View Article : Google Scholar : PubMed/NCBI | |
Li L, Zhang L, Montgomery KC, Jiang L, Lyon CJ and Hu TY: Advanced technologies for molecular diagnosis of cancer: State of pre-clinical tumor-derived exosome liquid biopsies. Mater Today Bio. 18:1005382022. View Article : Google Scholar | |
Liao J, Liu R, Yin L and Pu Y: Expression profiling of exosomal miRNAs derived from human esophageal cancer cells by solexa High-Throughput sequencing. Int J Mol Sci. 15:15530–15551. 2014. View Article : Google Scholar : PubMed/NCBI | |
Saunderson SC, Dunn AC, Crocker PR and McLellan AD: CD169 mediates the capture of exosomes in spleen and lymph node. Blood. 123:208–216. 2014. View Article : Google Scholar : | |
Andersen JS and Mann M: Organellar proteomics: Turning inventories into insights. EMBO Rep. 7:874–879. 2006. View Article : Google Scholar : PubMed/NCBI | |
Darband SG, Mirza-Aghazadeh-Attari M, Kaviani M, Mihanfar A, Sadighparvar S, Yousefi B and Majidinia M: Exosomes: Natural nanoparticles as bio shuttles for RNAi delivery. J Control Rel. 289:158–170. 2018. View Article : Google Scholar | |
Wang S, Wang J, Wei W and Ma G: Exosomes: The indispensable messenger in tumor pathogenesis and the rising star in antitumor applications. Adv Biosyst. 3:e19000082019. View Article : Google Scholar : PubMed/NCBI | |
Zhao X, Wu D, Ma X, Wang J, Hou W and Zhang W: Exosomes as drug carriers for cancer therapy and challenges regarding exosome uptake. Biomed Pharmacother. 128:1102372020. View Article : Google Scholar : PubMed/NCBI | |
Rashed M, Bayraktar EK, Helal G, Abd-Ellah M, Amero P, Chavez-Reyes A and Rodriguez-Aguayo C: Exosomes: From garbage bins to promising therapeutic targets. Int J Mol Sci. 18:5382017. View Article : Google Scholar | |
Mannavola F, D'Oronzo S, Cives M, Stucci LS, Ranieri G, Silvestris F and Tucci M: Extracellular vesicles and epigenetic modifications are hallmarks of melanoma progression. Int J Mol Sci. 21:522019. View Article : Google Scholar : PubMed/NCBI | |
He C, Zheng S, Luo Y and Wang B: Exosome theranostics: Biology and translational medicine. Theranostics. 8:237–255. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Kim SY, Tu W, Kim J, Xu A, Yang YM, Matsuda M, Reolizo L, Tsuchiya T, Billet S, et al: Extracellular vesicles in fatty liver promote a metastatic tumor microenvironment. Cell Metab. 35:1209–1226.e13. 2023. View Article : Google Scholar : PubMed/NCBI | |
Yu H, Sun T, An J, Wen L, Liu F, Bu Z, Cui Y and Feng J: Potential roles of exosomes in Parkinson's Disease: From pathogenesis, diagnosis, and treatment to prognosis. Front Cell Dev Biol. 8:862020. View Article : Google Scholar : PubMed/NCBI | |
Farooqi AA, Desai NN, Qureshi MZ, Librelotto DRN, Gasparri ML, Bishayee A, Nabavi SM, Curti V and Daglia M: Exosome biogenesis, bioactivities and functions as new delivery systems of natural compounds. Biotechnol Adv. 36:328–334. 2018. View Article : Google Scholar | |
Doyle L and Wang M: Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells. 8:7272019. View Article : Google Scholar : PubMed/NCBI | |
Das CK, Jena BC, Banerjee I, Das S, Parekh A, Bhutia SK and Mandal M: Exosome as a novel shuttle for delivery of therapeutics across biological barriers. Mol Pharm. 16:24–40. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Zhang M and Zhou F: Biological functions and clinical applications of exosomal long non-coding RNAs in cancer. J Cell Mol Med. 24:11656–11666. 2020. View Article : Google Scholar : PubMed/NCBI | |
Tai Y, Chen KC, Hsieh JT and Shen TL: Exosomes in cancer development and clinical applications. Cancer Sci. 109:2364–2374. 2018. View Article : Google Scholar : PubMed/NCBI | |
Pan X, Li X, Dong L, Liu T, Zhang M, Zhang L, Zhang X, Huang L, Shi W, Sun H, et al: Tumour vasculature at single-cell resolution. Nature. 632:429–436. 2024. View Article : Google Scholar : PubMed/NCBI | |
Weis SM and Cheresh DA: Tumor angiogenesis: Molecular pathways and therapeutic targets. Nat Med. 17:1359–1370. 2011. View Article : Google Scholar : PubMed/NCBI | |
Shashni B, Nishikawa Y and Nagasaki Y: Management of tumor growth and angiogenesis in triple-negative breast cancer by using redox nanoparticles. Biomaterials. 269:1206452021. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Qu X, Cao B, Yang T, Bao Q, Yue H, Zhang L, Zhang G, Wang L, Qiu P, et al: Selectively suppressing tumor angiogenesis for targeted breast cancer therapy by genetically engineered phage. Adv Mater. 32:e20012602020. View Article : Google Scholar : PubMed/NCBI | |
Schaaf MB, Garg AD and Agostinis P: Defining the role of the tumor vasculature in antitumor immunity and immunotherapy. Cell Death Dis. 9:1152018. View Article : Google Scholar : PubMed/NCBI | |
Arneth B: Tumor microenvironment. Medicina (Kaunas). 56:152019. View Article : Google Scholar | |
Hanahan D and Coussens LM: Accessories to the crime: Functions of cells recruited to the tumor microenvironment. Cancer Cell. 21:309–322. 2012. View Article : Google Scholar : PubMed/NCBI | |
Vesely MD, Kershaw MH, Schreiber RD and Smyth MJ: Natural innate and adaptive immunity to cancer. Annu Rev Immunol. 29:235–271. 2011. View Article : Google Scholar : PubMed/NCBI | |
Blankenstein T, Coulie PG, Gilboa E and Jaffee EM: The determinants of tumour immunogenicity. Nat Rev Cancer. 12:307–313. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lugano R, Ramachandran M and Dimberg A: Tumor angiogenesis: Causes, consequences, challenges and opportunities. Cell Mol Life Sci. 77:1745–1770. 2019. View Article : Google Scholar : PubMed/NCBI | |
Baeriswyl V and Christofori G: The angiogenic switch in carcinogenesis. Semin Cancer Biol. 19:329–337. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ntellas P, Mavroeidis L, Gkoura S, Gazouli I, Amylidi AL, Papadaki A, Zarkavelis G, Mauri D, Karpathiou G, Kolettas E, et al: Old Player-new tricks: Non angiogenic effects of the VEGF/VEGFR pathway in cancer. Cancers (Basel). 12:31452020. View Article : Google Scholar : PubMed/NCBI | |
Welti J, Loges S, Dimmeler S and Carmeliet P: Recent molecular discoveries in angiogenesis and antiangiogenic therapies in cancer. J Clin Invest. 123:3190–3200. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chouaib S, Noman MZ, Kosmatopoulos K and Curran MA: Hypoxic stress: Obstacles and opportunities for innovative immunotherapy of cancer. Oncogene. 36:439–445. 2016. View Article : Google Scholar : PubMed/NCBI | |
Reardon DA: Update on the use of angiogenesis inhibitors in adult patients with brain tumors. Clin Adv Hematol Oncol. 12:293–303. 2014.PubMed/NCBI | |
Winkler F, Kozin SV, Tong RT, Chae SS, Booth MF, Garkavtsev I, Xu L, Hicklin DJ, Fukumura D, di Tomaso E, et al: Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation. Cancer Cell. 6:553–563. 2004.PubMed/NCBI | |
Casazza A, Laoui D, Wenes M, Rizzolio S, Bassani N, Mambretti M, Deschoemaeker S, Van Ginderachter JoA, Tamagnone L and Mazzone M: Impeding macrophage entry into hypoxic tumor areas by Sema3A/Nrp1 signaling blockade inhibits angiogenesis and restores antitumor immunity. Cancer Cell. 24:695–709. 2013. View Article : Google Scholar : PubMed/NCBI | |
Rivera Lee B, Meyronet D, Hervieu V, Frederick, Mitchell J, Bergsland E and Bergers G: Intratumoral myeloid cells regulate responsiveness and resistance to antiangiogenic therapy. Cell Reports. 11:577–591. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chauhan VP, Stylianopoulos T, Martin JD, Popović Z, Chen O, Kamoun WS, Bawendi MG, Fukumura D and Jain RK: Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner. Nat Nanotechnol. 7:383–388. 2012. View Article : Google Scholar : PubMed/NCBI | |
Stylianopoulos T and Jain RK: Combining two strategies to improve perfusion and drug delivery in solid tumors. Proc Natl Acad Sci USA. 110:18632–18637. 2013. View Article : Google Scholar : PubMed/NCBI | |
Weiss SA, Han SW, Lui K, Tchack J, Shapiro R, Berman R, Zhong J, Krogsgaard M, Osman I and Darvishian F: Immunologic heterogeneity of tumor-infiltrating lymphocyte composition in primary melanoma. Hum Pathol. 57:16–125. 2016. View Article : Google Scholar | |
Park JS, Kim IK, Han S, Park I, Kim C, Bae J, Oh SJ, Lee S, Kim JH, Woo DC, et al: Normalization of tumor vessels by Tie2 activation and Ang2 inhibition enhances drug delivery and produces a favorable tumor microenvironment. Cancer Cell. 30:953–967. 2016. View Article : Google Scholar : PubMed/NCBI | |
Maes H, Olmeda D, Soengas MS and Agostinis P: Vesicular trafficking mechanisms in endothelial cells as modulators of the tumor vasculature and targets of antiangiogenic therapies. FEBS J. 283:25–38. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kofler NM, Shawber CJ, Kangsamaksin T, Reed HO, Galatioto J and Kitajewski J: Notch signaling in developmental and tumor angiogenesis. Genes Cancer. 2:1106–1116. 2011. View Article : Google Scholar | |
Maes H, Kuchnio A, Peric A, Moens S, Nys K, De Bock K, Quaegebeur A, Schoors S, Georgiadou M, Wouters J, et al: Tumor vessel normalization by chloroquine independent of autophagy. Cancer Cell. 26:190–206. 2014. View Article : Google Scholar : PubMed/NCBI | |
Liang X, De Vera ME, Buchser WJ, de Vivar Chavez AR, Loughran P, Stolz DB, Basse P, Wang T, Van Houten B, Zeh HJ III and Lotze MT: Inhibiting systemic autophagy during interleukin 2 immunotherapy promotes long-term tumor regression. Cancer Res. 72:2791–2801. 2012. View Article : Google Scholar : PubMed/NCBI | |
Liu ZL, Chen HH, Zheng LL, Sun LP and Shi L: Angiogenic signaling pathways and anti-angiogenic therapy for cancer. Signal Transduct Target Ther. 8:1982023. View Article : Google Scholar : PubMed/NCBI | |
Goel S, Wong AH and Jain RK: Vascular normalization as a therapeutic strategy for malignant and nonmalignant disease. Cold Spring Harb Perspect Med. 2:a0064862012. View Article : Google Scholar : PubMed/NCBI | |
Li YJ, Lei YH, Yao N, Wang CR, Hu N, Ye WC, Zhang DM and Chen ZS: Autophagy and multidrug resistance in cancer. Chin J Cancer. 36:522017. View Article : Google Scholar : PubMed/NCBI | |
Guerrouahen BS, Pasquier J, Kaoud NA, Maleki M, Beauchamp MC, Yasmeen A, Ghiabi P, Lis R, Vidal F, Saleh A, et al: Akt-activated endothelium constitutes the niche for residual disease and resistance to bevacizumab in ovarian cancer. Mol Cancer Ther. 13:3123–3136. 2014. View Article : Google Scholar : PubMed/NCBI | |
Eyler CE and Rich JN: Survival of the fittest: Cancer stem cells in therapeutic resistance and angiogenesis. J Clin Oncol. 26:2839–2845. 2008. View Article : Google Scholar : PubMed/NCBI | |
McMillin DW, Negri JM and Mitsiades CS: The role of tumour-stromal interactions in modifying drug response: Challenges and opportunities. Nat Rev Drug Discov. 12:217–228. 2013. View Article : Google Scholar : PubMed/NCBI | |
Jayson GC, Hicklin DJ and Ellis LM: Antiangiogenic therapy-evolving view based on clinical trial results. Nat Rev Clin Oncol. 9:297–303. 2012. View Article : Google Scholar : PubMed/NCBI | |
Cao Y, Arbiser J, D'Amato RJ, D'Amore PA, Ingber DE, Kerbel R, Klagsbrun M, Lim S, Moses MA, Zetter B, et al: Forty-year journey of angiogenesis translational research. Sci Transl Med. 3:114rv32011. View Article : Google Scholar : PubMed/NCBI | |
Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W, Berlin J, Baron A, Griffing S, Holmgren E, et al: Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med. 350:2335–2342. 2004. View Article : Google Scholar : PubMed/NCBI | |
Tang T, Huang X, Zhang G, Hong Z, Bai X and Liang T: Advantages of targeting the tumor immune microenvironment over blocking immune checkpoint in cancer immunotherapy. Signal Transduct Target Ther. 6:722021. View Article : Google Scholar : PubMed/NCBI | |
Song Y, Fu Y, Xie Q, Zhu B, Wang J and Zhang B: Anti-angiogenic agents in combination with immune checkpoint inhibitors: A promising strategy for cancer treatment. Front Immunol. 11:19562020. View Article : Google Scholar : PubMed/NCBI | |
Ciciola P, Cascetta P, Bianco C, Formisano L and Bianco R: Combining immune checkpoint inhibitors with anti-angiogenic agents. J Clin Med. 9:6752020. View Article : Google Scholar : PubMed/NCBI | |
Yi M, Jiao D, Qin S, Chu Q, Wu K and Li A: Synergistic effect of immune checkpoint blockade and anti-angiogenesis in cancer treatment. Mol Cancer. 18:602019. View Article : Google Scholar : PubMed/NCBI | |
Neves KB, Montezano AC, Lang NN and Touyz RM: Vascular toxicity associated with anti-angiogenic drugs. Clin Sci (Lond). 134:2503–2520. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hilmi M, Neuzillet C, Calderaro J, Lafdil F, Pawlotsky JM and Rousseau B: Angiogenesis and immune checkpoint inhibitors as therapies for hepatocellular carcinoma: Current knowledge and future research directions. J Immunother Cancer. 7:3332019. View Article : Google Scholar : PubMed/NCBI | |
Xiao L, Yan K, Yang Y, Chen N, Li Y, Deng X, Wang L, Liu Y, Mu L, Li R, et al: Anti-vascular endothelial growth factor treatment induces blood flow recovery through vascular remodeling in high-fat diet induced diabetic mice. Microvasc Re. 105:70–76. 2016. View Article : Google Scholar | |
Broekman F, Giovannetti E and Peters GJ: Tyrosine kinase inhibitors: Multi-targeted or single-targeted? Mol Cancer Ther. 2:80–93. 2011. | |
Hutzen B, Bid HK, Houghton PJ, Pierson CR, Powell K, Bratasz A, Raffel C and Studebaker AW: Treatment of medulloblastoma with oncolytic measles viruses expressing the angiogenesis inhibitors endostatin and angiostatin. BMC Cancer. 14:2062014. View Article : Google Scholar : PubMed/NCBI | |
Mohajeri A, Pilehvar-Soltanahmadi Y, Pourhassan-Moghaddam M, Abdolalizadeh J, Karimi P and Zarghami N: Cloning and expression of recombinant human endostatin in periplasm of escherichia coli expression system. Adv Pharm Bull. 6:187–194. 2016. View Article : Google Scholar : PubMed/NCBI | |
Matejuk A, Collet G, Nadim M, Grillon C and Kieda C: MicroRNAs and tumor vasculature normalization: Impact on Anti-Tumor immune response. Arch Immunol Ther Exp (Warsz). 61:285–299. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yin R, Guo L, Zhang W and Zheng J: The pleiotropic effects of miRNAs on tumor angiogenesis. J Cell Biochem. 116:1807–1815. 2015. View Article : Google Scholar | |
Fasanaro P, D'Alessandra Y, Di Stefano V, Melchionna R, Romani S, Pompilio G, Capogrossi MC and Martelli F: MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin-A3. J Biol Chem. 283:15878–15883. 2008. View Article : Google Scholar : PubMed/NCBI | |
Karaa ZS, Iacovoni JS, Bastide A, Lacazette E, Touriol C and Prats H: The VEGF IRESes are differentially susceptible to translation inhibition by miR-16. RNA. 15:249–524. 2009. View Article : Google Scholar : PubMed/NCBI | |
Mao G, Liu Y, Fang X, Liu Y, Fang L, Lin L, Liu X and Wang N: Tumor-derived microRNA-494 promotes angiogenesis in non-small cell lung cancer. Angiogenesis. 18:373–382. 2015. View Article : Google Scholar : PubMed/NCBI | |
Azhar M, Runyan RB, Gard C, Sanford LP, Miller ML, Andringa A, Pawlowski S, Rajan S and Doetschman T: Ligand-specific function of transforming growth factor beta in epithelial-mesenchymal transition in heart development. Dev Dyn. 238:431–442. 2009. View Article : Google Scholar : PubMed/NCBI | |
Piera-Velazquez S and Jimenez SA: Endothelial to mesenchymal transition: Role in physiology and in the pathogenesis of human diseases. Physiol Rev. 99:1281–1324. 2019. View Article : Google Scholar : PubMed/NCBI | |
Piera-Velazquez S, Li Z and Jimenez SA: Role of endothelial-mesenchymal transition (EndoMT) in the pathogenesis of fibrotic disorders. Am J Pathol. 179:1074–1080. 2011. View Article : Google Scholar : PubMed/NCBI | |
Medici D and Olsen BR: The role of endothelial-mesenchymal transition in heterotopic ossification. J Bone Miner Res. 27:1619–1622. 2012. View Article : Google Scholar : PubMed/NCBI | |
van Meeteren LA and ten Dijke P: Regulation of endothelial cell plasticity by TGF-β. Cell Tissue Res. 347:177–186. 2011. View Article : Google Scholar | |
Massagué J, Seoane J and Wotton D: Smad transcription factors. Genes Dev. 19:2783–2810. 2005. View Article : Google Scholar : PubMed/NCBI | |
Heldin CH and Moustakas A: Role of Smads in TGFβ signaling. Cell Tissue Res. 347:21–36. 2011. View Article : Google Scholar | |
Yeon JH, Jeong HE, Seo H, Cho S, Kim K, Na D Chung S, Park J, Choi N and Kang JY: Cancer-derived exosomes trigger endothelial to mesenchymal transition followed by the induction of cancer-associated fibroblasts. Acta Biomater. 76:146–153. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yamada NO, Heishima K, Akao Y and Senda T: Extracellular vesicles containing MicroRNA-92a-3p facilitate partial Endothelial-mesenchymal transition and angiogenesis in endothelial cells. Int J Mol Sci. 20:44062019. View Article : Google Scholar : PubMed/NCBI | |
Kim J, Lee C, Kim I, Ro J, Kim J, Min Y, Park J, Sunkara V, Park YS, Michael I, et al: Three-dimensional human liver-chip emulating premetastatic niche formation by breast cancer-derived extracellular vesicles. ACS Nano. 14:14971–14988. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yin Z and Wang L: Endothelial-to-mesenchymal transition in tumour progression and its potential roles in tumour therapy. Ann Med. 55:1058–1069. 2023. View Article : Google Scholar : PubMed/NCBI | |
Yin Z, Dong C, Jiang K, Xu Z, Li R, Guo K, Shao S and Wang L: Heterogeneity of cancer-associated fibroblasts and roles in the progression, prognosis, and therapy of hepatocellular carcinoma. J Hematol Oncol. 12:1012019. View Article : Google Scholar : PubMed/NCBI | |
Sahai E, Astsaturov I, Cukierman E, DeNardo DG, Egeblad M, Evans RM, Fearon D, Greten FR, Hingorani SR, Hunter T, et al: A framework for advancing our understanding of cancer-associated fibroblasts. Nat Rev Cancer. 20:174–186. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kobayashi H, Enomoto A, Woods SL, Burt AD, Takahashi M and Worthley DL: Cancer-associated fibroblasts in gastrointestinal cancer. Nat Rev Gastroenterol Hepatol. 16:282–295. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ishii G, Ochiai A and Neri S: Phenotypic and functional heterogeneity of cancer-associated fibroblast within the tumor microenvironment. Adv Drug Deliv Rev. 99:186–196. 2016. View Article : Google Scholar | |
Huang M, Liu T, Ma P, Mitteer RA, Zhang Z, Kim HJ, Yeo E, Zhang D, Cai P, Li C, et al: c-Met-mediated endothelial plasticity drives aberrant vascularization and chemoresistance in glioblastoma. J Clin Invest. 126:1801–1814. 2016. View Article : Google Scholar : PubMed/NCBI | |
Nie L, Lyros O, Medda R, Jovanovic N, Schmidt JL, Otterson MF, Johnson CP, Behmaram B, Shaker R and Rafiee P: Endothelial-mesenchymal transition in normal human esophageal endothelial cells cocultured with esophageal adenocarcinoma cells: Role of IL-1β and TGF-β2. Am J Physiol Cell Physiol. 307:C859–C877. 2014. View Article : Google Scholar : PubMed/NCBI | |
Liu T, Ma W, Xu H, Huang M, Zhang D, He Z, Zhang L, Brem S, O'Rourke DM, Gong Y, et al: PDGF-mediated mesenchymal transformation renders endothelial resistance to anti-VEGF treatment in glioblastoma. Nat Commun. 9:34392018. View Article : Google Scholar : PubMed/NCBI | |
Zhu K, Pan Q, Jia LQ, Dai Z, Ke AW, Zeng HY, Tang ZY, Fan J and Zhou J: MiR-302c inhibits tumor growth of hepatocellular carcinoma by suppressing the endothelial-mesenchymal transition of endothelial cells. Sci Rep. 4:55242014. View Article : Google Scholar : PubMed/NCBI | |
Ghiabi P, Jiang J, Pasquier J, Maleki M, Abu-Kaoud N, Halabi N, Guerrouahen BS, Rafii S and Rafii A: Breast cancer cells promote a notch-dependent mesenchymal phenotype in endothelial cells participating to a pro-tumoral niche. J Transl Med. 13:272015. View Article : Google Scholar : PubMed/NCBI | |
Valastyan S and Weinberg RA: Tumor metastasis: Molecular insights and evolving paradigms. Cell. 147:275–292. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yoshimatsu Y, Wakabayashi I, Kimuro S, Takahashi N, Takahashi K, Kobayashi M, Maishi N, Podyma-Inoue KA, Hida K, Miyazono K and Watabe T: TNF-α enhances TGF-β-induced endothelial-to-mesenchymal transition via TGF-β signal augmentation. Cancer Sci. 111:2385–2399. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Antin P, Berx G, Blanpain C, Brabletz T, Bronner M, Campbell K, Cano A, Casanova J, Christofori G, et al: Guidelines and definitions for research on epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 21:341–352. 2020. View Article : Google Scholar : PubMed/NCBI | |
Smeda M, Kieronska A, Adamski MG, Proniewski B, Sternak M, Mohaissen T, Przyborowski K, Derszniak K, Kaczor D, Stojak M, et al: Nitric oxide deficiency and endothelial-mesenchymal transition of pulmonary endothelium in the progression of 4T1 metastatic breast cancer in mice. Breast Cancer Res. 20:862018. View Article : Google Scholar : PubMed/NCBI | |
Krizbai IA, Gasparics A, Nagyoszi P, Fazakas C, Molnar J, Wilhelm I, Bencs R, Rosivall L and Sebe A: Endothelial-mesenchymal transition of brain endothelial cells: Possible role during metastatic extravasation. PLoS One. 10:e01196552015. View Article : Google Scholar : PubMed/NCBI | |
Choi SH, Kim AR, Nam JK, Kim JM, Kim JY, Seo HR, Lee HJ, Cho J and Lee YJ: Tumour-vasculature development via endothelial-to-mesenchymal transition after radiotherapy controls CD44v6+ cancer cell and macrophage polarization. Nat Commun. 9:51082018. View Article : Google Scholar : | |
Ribas A: Adaptive immune resistance: How cancer protects from immune attack. Cancer Discovery. 5:915–919. 2015. View Article : Google Scholar : PubMed/NCBI | |
Spranger S, Spaapen RM, Zha Y, Williams J, Meng Y, Ha TT and Gajewski TF: Up-regulation of PD-L1, IDO, and T(regs) in the melanoma tumor microenvironment is driven by CD8(+) T cells. Sci Transl Med. 5:200ra1162013. View Article : Google Scholar : PubMed/NCBI | |
Landsberg J, Kohlmeyer J, Renn M, Bald T, Rogava M, Cron M, Fatho M, Lennerz V, Wölfel T, Hölzel M and Tüting T: Melanomas resist T-cell therapy through inflammation-induced reversible dedifferentiation. Nature. 490:412–416. 2012. View Article : Google Scholar : PubMed/NCBI | |
Knutson KL, Lu H, Stone B, Reiman JM, Behrens MD, Prosperi CM, Gad EA, Smorlesi A and Disis ML: Immunoediting of cancers may lead to epithelial to mesenchymal transition. J Immunol. 177:1526–1533. 2006. View Article : Google Scholar : PubMed/NCBI | |
Santisteban M, Reiman JM, Asiedu MK, Behrens MD, Nassar A, Kalli KR, Haluska P, Ingle JN, Hartmann LC, Manjili MH, et al: Immune-induced epithelial to mesenchymal transition in vivo generates breast cancer stem cells. Cancer Res. 69:2887–2895. 2009. View Article : Google Scholar : PubMed/NCBI | |
Fan C, Chen LL, Hsu TA, Chen CC, Chua KV, LiC P and Huang TS: Endothelial-mesenchymal transition harnesses HSP90α-secreting M2-macrophages to exacerbate pancreatic ductal adenocarcinoma. J Hematol Oncol. 12:1382019. View Article : Google Scholar | |
Liu X, Hoft DF and Peng G: Tumor microenvironment metabolites directing T cell differentiation and function. Trends Immunol. 43:132–147. 2022. View Article : Google Scholar : PubMed/NCBI | |
Riegler J, Gill H, Ogasawara A, Hedehus M, Javinal V, Oeh J, Ferl GZ, Marik J, Williams S, Sampath D, et al: VCAM-1 density and tumor perfusion predict T-cell infiltration and treatment response in preclinical models. Neoplasia. 21:1036–1050. 2019. View Article : Google Scholar : PubMed/NCBI | |
Mao X, Xu J, Wang W, Liang C, Hua J, Liu J, Zhang B, Meng Q, Yu X and Shi S: Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: New findings and future perspectives. Mol Cancer. 20:1312021. View Article : Google Scholar : PubMed/NCBI | |
Borriello L, Seeger RC, Asgharzadeh S and DeClerck YA: More than the genes, the tumor microenvironment in neuroblastoma. Cancer Lett. 380:304–314. 2016. View Article : Google Scholar | |
Marques P, Grossman AB and Korbonits M: The tumour microenvironment of pituitary neuroendocrine tumours. Front Neuroendocrinol. 58:1008522020. View Article : Google Scholar : PubMed/NCBI | |
Zhang L and Yu D: Exosomes in cancer development, metastasis, and immunity. Biochim Biophys Acta Rev Cancer. 1871:455–468. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhao H, Yang L, Baddour J, Achreja A, Bernard V, Moss T, Marini JC, Tudawe T, Seviour EG, San Lucas FA, et al: Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism. ELife. 5:e102502016. View Article : Google Scholar : PubMed/NCBI | |
Whiteside TL: Tumor-derived exosomes and their role in cancer progression. Adv Clin Chem. 174:103–141. 2016. View Article : Google Scholar | |
Hu YB, Yan C, Mu L, Mi YL, Zhao H, Hu H, Li XL, Tao DD, Wu YQ, Gong JP and Qin JC: Exosomal Wnt-induced dedifferentiation of colorectal cancer cells contributes to chemotherapy resistance. Oncogene. 38:1951–1965. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hu JL, Wang W, Lan XL, Zeng ZC, Liang YS, Yan YR, Song FY, Wang FF, Zhu XH, Liao WJ, et al: CAFs secreted exosomes promote metastasis and chemotherapy resistance by enhancing cell stemness and epithelial-mesenchymal transition in colorectal cancer. Mol Cancer. 18:912019. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Liu J, Zhang Q, Liu B, Cheng Y, Zhang Y, Sun Y, Ge H and Liu Y: Exosome-mediated transfer of miR-93-5p from cancer-associated fibroblasts confer radioresistance in colorectal cancer cells by downregulating FOXA1 and upregulating TGFB3. J Exp Clin Cancer Res. 39:652020. View Article : Google Scholar : PubMed/NCBI | |
Pan S, Deng Y, Fu J, Zhang Y, Zhang Z and Qin X: N6-methyladenosine upregulates miR-181d-5p in exosomes derived from cancer-associated fibroblasts to inhibit 5-FU sensitivity by targeting NCALD in colorectal cancer. Int J Oncol. 60:142022. View Article : Google Scholar : | |
Yuan H, Chen B, Chai R, Gong W, Wan Z, Zheng B, Hu X, Guo Y, Gao S, Dai Q, et al: Loss of exosomal micro-RNA-200b-3p from hypoxia cancer-associated fibroblasts reduces sensitivity to 5-flourouracil in colorectal cancer through targeting high-mobility group box 3. Front Oncol. 12:9201312022. View Article : Google Scholar : PubMed/NCBI | |
Jiang Y, Qiu Q, Jing X, Song Z, Zhang Y, Wang C, Liu K, Ye F, Ji X, Luo F and Zhao R: Cancer-associated fibroblast-derived exosome miR-181b-3p promotes the occurrence and development of colorectal cancer by regulating SNX2 expression. Biochem Biophys Res Commun. 641:177–185. 2023. View Article : Google Scholar | |
Shi W, Liu Y, Qiu X, Yang L and Lin G: Cancer-associated fibroblasts-derived exosome-mediated transfer of miR-345-5p promotes the progression of colorectal cancer by targeting CDKN1A. Carcinogenesis. 44:317–327. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhou L, Li J, Tang Y and Yang M: Exosomal LncRNA LINC00659 transferred from cancer-associated fibroblasts promotes colorectal cancer cell progression via miR-342-3p/ANXA2 axis. J Transl Med. 19:82021. View Article : Google Scholar : PubMed/NCBI | |
Qu Z, Yang KD, Luo BH and Zhang F: CAFs-secreted exosomal cricN4BP2L2 promoted colorectal cancer stemness and chemoresistance by interacting with EIF4A3. Exp Cell Res. 418:1132662022. View Article : Google Scholar : PubMed/NCBI | |
Yang X, Li Y, Zou L and Zhu Z: Role of exosomes in crosstalk between Cancer-associated fibroblasts and cancer cells. Front Oncol. 9:3561029. View Article : Google Scholar | |
Yan Z, Sheng Z, Zheng Y, Feng R, Xiao Q, Shi L, Li H, Yin C, Luo H, Hao C, et al: Cancer-associated fibroblast-derived exosomal miR-18b promotes breast cancer invasion and metastasis by regulating TCEAL7. Cell Death Dis. 12:11202021. View Article : Google Scholar : PubMed/NCBI | |
Sun J, Du R, Li X, Liu C, Wang D, He X, Li G, Zhang K, Wang S, Hao Q, et al: CD63+ cancer-associated fibroblasts confer CDK4/6 inhibitor resistance to breast cancer cells by exosomal miR-20. Cancer Lett. 588:2167472024. View Article : Google Scholar | |
Fang Y, Zhou W, Rong Y, Kuang T, Xu X, Wu W, Wang D and Lou W: Exosomal miRNA-106b from cancer-associated fibroblast promotes gemcitabine resistance in pancreatic cancer. Exp Cell Res. 383:1115432019. View Article : Google Scholar : PubMed/NCBI | |
Zhao M, Zhuang A, Fang Y and Chatterjee S: Cancer-Associated fibroblast-derived exosomal miRNA-320a promotes macrophage M2 polarization in vitro by regulating PTEN/PI3Kγ signaling in pancreatic cancer. J Oncol. 2022:95146972022. View Article : Google Scholar | |
Wang Z, Zhang M, Liu L, Yang Y, Qiu J, Yu Y and Li J: Prognostic and immunological role of cancer-associated fibroblasts-derived exosomal protein in esophageal squamous cell carcinoma. Int Immunopharmacol. 124:1108372023. View Article : Google Scholar : PubMed/NCBI | |
Zhao G, Li H, Guo Q, Zhou A, Wang X, Li P and Zhang S: Exosomal Sonic Hedgehog derived from cancer-associated fibroblasts promotes proliferation and migration of esophageal squamous cell carcinoma. Cancer Med. 9:2500–2513. 2020. View Article : Google Scholar : PubMed/NCBI | |
Shi Z, Jiang T, Cao B, Sun X and Liu J: CAF-derived exosomes deliver LINC01410 to promote epithelial-mesenchymal transition of esophageal squamous cell carcinoma. Exp Cell Res. 412:1130332022. View Article : Google Scholar : PubMed/NCBI | |
Yang F, Yan Y, Yang Y, Hong X, Wang M, Yang Z, Liu B and Ye L: MiR-210 in exosomes derived from CAFs promotes non-small cell lung cancer migration and invasion through PTEN/PI3K/AKT pathway. Cell Signal. 73:1096752020. View Article : Google Scholar : PubMed/NCBI | |
Zhang T, Zhang P and Li HX: CAFs-Derived Exosomal miRNA-130a confers Cisplatin resistance of NSCLC cells through PUM2-dependent packaging. Int J Nanomedicine. 16:561–577. 2021. View Article : Google Scholar : PubMed/NCBI | |
Lu L, Huang J, Mo J, Da X, Li Q, Fan M and Lu H: Exosomal lncRNA TUG1 from cancer-associated fibroblasts promotes liver cancer cell migration, invasion, and glycolysis by regulating the miR-524-5p/SIX1 axis. Cell Mol Biol Lett. 27:172022. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, Tang W, Zhuo H, Zhu D, Rong D, Sun J and Song J: Cancer-associated fibroblast exosomes promote chemoresistance to cisplatin in hepatocellular carcinoma through circZFR targeting signal transducers and activators of transcription (STAT3)/nuclear factor-kappa B (NF-κB) pathway. Bioengineered. 13:4786–4797. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhuang J, Lu Q, Shen B, Huang X, Shen L, Zheng X, Huang R, Yan J and Guo H: TGFβ1 secreted by cancer-associated fibroblasts induces epithelial-mesenchymal transition of bladder cancer cells through lncRNA-ZEB2NAT. Sci Rep. 5:119242015. View Article : Google Scholar | |
Wang Y, Li T, Yang L, Zhang X, Wang X, Su X, Ji C and Wang Z: Cancer-associated fibroblast-released extracellular vesicles carrying miR-199a-5p induces the progression of gastric cancer through regulation of FKBP5-mediated AKT1/mTORC1 signaling pathway. Cell Cycle. 21:2590–2601. 2022. View Article : Google Scholar : PubMed/NCBI | |
Qu X, Liu B, Wang L, Liu L, Zhao W, Liu C, Ding J, Zhao S, Xu B, Yu H, et al: Loss of cancer-associated fibroblast-derived exosomal DACT3-AS1 promotes malignant transformation and ferroptosis-mediated oxaliplatin resistance in gastric cancer. Drug Resist Updat. 68:1009362023. View Article : Google Scholar : PubMed/NCBI | |
Yugawa K, Yoshizumi T, Mano Y, Itoh S, Harada N, Ikegami T, Kohashi K, Oda Y and Mori M: Cancer-associated fibroblasts promote hepatocellular carcinoma progression through downregulation of exosomal miR-150-3p. Eur J Surg Oncol. 47:384–393. 2021. View Article : Google Scholar | |
Chen X, Ren X, E J, Zhou Y and Bian R: Exosome-transmitted circ IFNGR2 modulates ovarian cancer metastasis via miR-378/ST5 Axis. Mol Cell Biol. 43:22–42. 2023. View Article : Google Scholar : PubMed/NCBI | |
Sun Z, Wang L, Dong L and Wang X: Emerging role of exosome signalling in maintaining cancer stem cell dynamic equilibrium. J Cell Mol Med. 22:3719–3728. 2018. View Article : Google Scholar : PubMed/NCBI | |
Xu J, Liao K and Zhou W: Exosomes regulate the transformation of cancer cells in cancer stem cell homeostasis. Stem Cells Int. 2018:48373702018. View Article : Google Scholar : PubMed/NCBI | |
Li W, Zhang L, Guo B, Deng J, Wu S, Li F, Wang Y, Lu J and Zhou Y: Exosomal FMR1-AS1 facilitates maintaining cancer stem-like cell dynamic equilibrium via TLR7/NFκB/c-Myc signaling in female esophageal carcinoma. Mol Cancer. 18:222019. View Article : Google Scholar | |
Wang L, Yang G, Zhao D, Wang J, Bai Y, Peng Q, Wang H, Fang R, Chen G, Wang Z, et al: CD103-positive CSC exosome promotes EMT of clear cell renal cell carcinoma: Role of remote MiR-19b-3p. Mol Cancer. 18:862019. View Article : Google Scholar : PubMed/NCBI | |
Cheng Z, Lei Z, Yang P, Si A, Xiang D, Tang X, Guo G, Zhou J and Hüser N: Exosome-transmitted p120-catenin suppresses hepatocellular carcinoma progression via STAT3 pathways. Mol Carcinog. 58:1389–1399. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Zheng Y and Zhao M: Exosome-Based cancer therapy: Implication for targeting cancer stem cells. Front Pharmacol. 7:5332017. View Article : Google Scholar : PubMed/NCBI | |
Yang Z, Zhao N, Cui J, Wu H, Xiong J and Peng T: Exosomes derived from cancer stem cells of gemcitabine-resistant pancreatic cancer cells enhance drug resistance by delivering miR-210. Cell Oncol. 43:123–136. 2019. View Article : Google Scholar | |
Boelens MC, Wu TJ, Nabet BY, Xu B, Qiu Y, Yoon T, Azzam DJ, Twyman-Saint Victor C, Wiemann BZ, Ishwaran H, et al: Exosome transfer from stromal to breast cancer cells regulates therapy resistance pathways. Cell. 159:499–513. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yao H, Liu N, Lin MC and Zheng J: Positive feedback loop between cancer stem cells and angiogenesis in hepatocellular carcinoma. Cancer Lett. 379:213–219. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang ZF, Liao F, Wu H and Dai J: Glioma stem cells-derived exosomal miR-26a promotes angiogenesis of microvessel endothelial cells in glioma. J Exp Clin Cancer Res. 38:2012019. View Article : Google Scholar : PubMed/NCBI | |
Zhang D, Li D, Shen L, Hu D, Tang B, Guo W, Wang Z, Zhang Z, Wei G and He D: Exosomes derived from Piwil2-induced cancer stem cells transform fibroblasts into cancer-associated fibroblasts. Oncol Rep. 43:1125–1132. 2020.PubMed/NCBI | |
Wang L, He J, Hu H, Tu L, Sun Z, Liu Y and Luo F: Lung CSC-derived exosomal miR-210-3p contributes to a pro-metastatic phenotype in lung cancer by targeting FGFRL1. J Cell Mol Med. 24:6324–6339. 2020. View Article : Google Scholar : PubMed/NCBI | |
Dai W, Jin X, Han L, Huang H, Ji Z, Xu X, Tang M, Jiang B and Chen W: Exosomal lncRNA DOCK9-AS2 derived from cancer stem cell-like cells activated Wnt/β-catenin pathway to aggravate stemness, proliferation, migration, and invasion in papillary thyroid carcinoma. Cell Death Dis. 11:7432020. View Article : Google Scholar | |
Wu Q, He Y, Liu X, Luo F, Jiang Y, Xiang M and Zhao R: Cancer stem cell-like cells-derived exosomal CDKN2B-AS1 stabilizes CDKN2B to promote the growth and metastasis of thyroid cancer via TGF-β1/Smad2/3 signaling. Exp Cell Res. 419:1132682022. View Article : Google Scholar | |
Wu Q, He Y, Liu X, Luo F, Jiang Y, Xiang M and Zhao R: Cancer stem cell-like cells-derived exosomal lncRNA CDKN2B-AS1 promotes biological characteristics in thyroid cancer via miR-122-5p/P4HA1 axis. Exp Cell Res. 22:19–29. 2023. | |
Li X, Liu D, Chen H, Zeng B, Zhao Q, Zhang Y, Chen Y, Wang J and Xing HR: Melanoma stem cells promote metastasis via exosomal miR-1268a inactivation of autophagy. Biol Res. 55:292022. View Article : Google Scholar : PubMed/NCBI | |
Han T, Chen L and Li K, Hu Q, Zhang Y, You X, Han L, Chen T and Li K: Significant CircRNAs in liver cancer stem cell exosomes: Mediator of malignant propagation in liver cancer? Mol Cancer. 22:1972023. View Article : Google Scholar : PubMed/NCBI | |
Deng H, Sun C, Sun Y, Li H, Yang L, Wu D, Gao Q and Jiang X: Lipid, Protein, and MicroRNA composition within mesenchymal stem Cell-derived exosomes. Cell Cell Reprogram. 20:178–186. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sharma A: Role of stem cell derived exosomes in tumor biology. Int J Cancer. 142:1086–1092. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yang YP, Nguyen PNN, Ma HI, Ho WJ, Chen YW, Chien Y, Yarmishyn AA, Huang PI, Lo WL, Wang CY, et al: Tumor mesenchymal stromal cells regulate cell migration of atypical teratoid rhabdoid tumor through Exosome-mediated miR155/SMARCA4 pathway. Cancers (Basel). 11:7202019. View Article : Google Scholar : PubMed/NCBI | |
Figueroa J, Phillips LM, Shahar T, Hossain A, Gumin J, Kim H, Bean AJ, Calin GA, Fueyo J, Walters ET, et al: Exosomes from glioma-associated mesenchymal stem cells increase the tumorigenicity of Glioma Stem-like cells via transfer of miR-1587. Cancer Res. 77:5808–5819. 2017. View Article : Google Scholar : PubMed/NCBI | |
Toh WS, Lai RC, Zhang B and Lim SK: MSC exosome works through a protein-based mechanism of action. Biochem Soc Trans. 46:843–853. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lee C, Mitsialis SA, Aslam M, Vitali SH, Vergadi E, Konstantinou G, Sdrimas K, Fernandez-Gonzalez A and Kourembanas S: Exosomes mediate the cytoprotective action of mesenchymal stromal cells on hypoxia-induced pulmonary hypertension. Circulation. 126:2601–2611. 2012. View Article : Google Scholar : PubMed/NCBI | |
Pakravan K, Babashah S, Sadeghizadeh M, Mowla SJ, Mossahebi-Mohammadi M, Ataei F, Dana N and Javan M: MicroRNA-100 shuttled by mesenchymal stem cell-derived exosomes suppresses in vitro angiogenesis through modulating the mTOR/HIF-1α/VEGF signaling axis in breast cancer cells. Cell Oncol. 40:457–470. 2017. View Article : Google Scholar | |
Biswas S, Mandal G, Roy Chowdhury S, Purohit S, Payne KK, Anadon C, Gupta A, Swanson P, Yu X, Conejo-Garcia JR and Bhattacharyya A: Exosomes produced by mesenchymal stem cells drive differentiation of myeloid cells into immunosuppressive M2-Polarized macrophages in breast cancer. J Immunol. 203:3447–3460. 2019. View Article : Google Scholar : PubMed/NCBI | |
Xu H, Zhao G, Zhang Y, Jiang H, Wang W, Zhao D, Hong J, Yu H and Qi L: Mesenchymal stem cell-derived exosomal microRNA-133b suppresses glioma progression via Wnt/β-catenin signaling pathway by targeting EZH2. Stem Cell Res Ther. 10:3812019. View Article : Google Scholar | |
Xu Z, Zhou X, Wu J, Cui X, Wang M, Wang X and Gao Z: Mesenchymal stem cell-derived exosomes carrying microRNA-150 suppresses the proliferation and migration of osteosarcoma cells via targeting IGF2BP1. Transl Cancer Res. 9:5323–5335. 2020. View Article : Google Scholar : PubMed/NCBI | |
Qi J, Zhang R and Wang Y: Exosomal miR-21-5p derived from bone marrow mesenchymal stem cells promote osteosarcoma cell proliferation and invasion by targeting PIK3R1. J Cell Mol Med. 25:11016–11030. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li T, Wan Y, Su Z, Li J, Han M and Zhou C: Mesenchymal stem Cell-derived exosomal microRNA-3940-5p inhibits colorectal cancer metastasis by targeting integrin α6. Dig Dis Sci. 66:1916–1927. 2020. View Article : Google Scholar | |
Gu H, Yan C, Wan H, Wu L, Liu J, Zhu Z and Gao D: Mesenchymal stem cell-derived exosomes block malignant behaviors of hepatocellular carcinoma stem cells through a lncRNA C5orf66-AS1/microRNA-127-3p/DUSP1/ERK axis. Human Cell. 34:1812–1829. 2021. View Article : Google Scholar : PubMed/NCBI | |
Lyu ZZ, Li M, Yang MY, Han M and Yang Z: Exosome-mediated transfer of circRNA563 promoting hepatocellular carcinoma by targeting the microRNA148a-3p/metal-regulatory transcription factor-1 pathway. World J Gastroenterol. 29:6060–6075. 2023. View Article : Google Scholar : PubMed/NCBI | |
Yong SB, Chung JY, Song Y, Kim J, Ra S and Kim YH: Non-viral nano-immunotherapeutics targeting tumor microenvironmental immune cells. Biomaterials. 219:1194012019. View Article : Google Scholar : PubMed/NCBI | |
Zhang Q, Fan Z, Zhang L, You Q and Wang L: Strategies for targeting Serine/Threonine protein phosphatases with small molecules in cancer. J Med Chem. 64:8916–8938. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Suo B, Long G, Gao Y, Song J, Zhang M, Feng B, Shang C and Wang D: Exosomal miRNA-16-5p derived from M1 macrophages enhances T cell-dependent immune response by regulating PD-L1 in gastric cancer. Front Cell Dev Biol. 8:5726892020. View Article : Google Scholar : PubMed/NCBI | |
Jiang H, Zhou L, Shen N, Ning X, Wu D, Jiang K and Huang X: M1 macrophage-derived exosomes and their key molecule lncRNA HOTTIP suppress head and neck squamous cell carcinoma progression by upregulating the TLR5/NF-κB pathway. Cell Death Dis. 13:1832022. View Article : Google Scholar | |
Li X and Tang M: Exosomes released from M2 macrophages transfer miR-221-3p contributed to EOC progression through targeting CDKN1B. Cancer Med. 9:5976–5988. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yin Z, Ma T, Huang B, Lin L, Zhou Y, Yan J, Zou Y and Chen S: Macrophage-derived exosomal microRNA-501-3p promotes progression of pancreatic ductal adenocarcinoma through the TGFBR3-mediated TGF-β signaling pathway. J Exp Clin Cancer Res. 38:3102019. View Article : Google Scholar | |
Mi X, Xu R, Hong S, Xu T, Zhang W and Liu M: M2 Macrophage-Derived exosomal lncRNA AFAP1-AS1 and MicroRNA-26a affect cell migration and metastasis in esophageal cancer. Mol Ther Nucl Acids. 22:779–790. 2020. View Article : Google Scholar | |
Yang Y, Guo Z, Chen W, Wang X, Cao M, Han X, Zhang K, Teng B, Cao J, Wu W, et al: M2 Macrophage-Derived exosomes promote angiogenesis and growth of pancreatic ductal adenocarcinoma by Targeting E2F2. Mol Ther. 29:1226–1238. 2021. View Article : Google Scholar : | |
Chen S, Lv M, Fang S, Ye W, Gao Y and Xu Y: Poly(I:C) enhanced anti-cervical cancer immunities induced by dendritic cells-derived exosomes. Int J Biol Macromol. 113:1182–1187. 2018. View Article : Google Scholar : PubMed/NCBI | |
Viaud S, Terme M, Flament C, Taieb J, André F, Novault S, Escudier B, Robert C, Caillat-Zucman S, Tursz T, et al: Dendritic cell-derived exosomes promote natural killer cell activation and proliferation: A role for NKG2D ligands and IL-15Ralpha. PLoS One. 4:e49422009. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Yin K, Tian J, Xia X, Ma J, Tang X, Xu H and Wang S: Granulocytic Myeloid-Derived suppressor cells promote the stemness of colorectal cancer cells through exosomal S100A9. Adv Sci (Weinh). 6:19012782019. View Article : Google Scholar : PubMed/NCBI | |
Zhou JH, Yao ZX, Zheng Z, Yang J, Wang R, Fu SJ, Pan XF, Liu ZH and Wu K: G-MDSCs-derived Exosomal miRNA-143-3p promotes proliferation via targeting of ITM2B in lung cancer. Onco Targets Ther. 13:9701–9719. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhou WJ, Zhang J, Xie F, Wu JN, Ye JF, Wang J, Wu K and Li MQ: CD45RO-CD8+ T cell-derived exosomes restrict estrogen-driven endometrial cancer development via the ERβ/miR-765/PLP2/Notch axis. Theranostics. 11:5330–5345. 2021. View Article : Google Scholar : | |
Cai Z, Yang F, Yu L, Yu Z, Jiang L, Wang Q, Yang Y, Wang L, Cao X and Wang J: Activated T cell exosomes promote tumor invasion via Fas signaling pathway. J Immunol. 188:5954–5961. 2012. View Article : Google Scholar : PubMed/NCBI | |
Xie Y, Zhang X, Zhao T, Li W and Xiang J: Natural CD8+25+ regulatory T cell-secreted exosomes capable of suppressing cytotoxic T lymphocyte-mediated immunity against B16 melanoma. Biochem Biophys Res Commun. 438:152–155. 2013. View Article : Google Scholar : PubMed/NCBI | |
Guyon N, Garnier D, Briand J, Nadaradjane A, Bougras-Cartron G, Raimbourg J, Campone M, Heymann D, Vallette FM, Frenel JS and Cartron PF: Anti-PD1 therapy induces lymphocyte-derived exosomal miRNA-4315 release inhibiting Bim-mediated apoptosis of tumor cells. Cell Death Dis. 11:10482020. View Article : Google Scholar : PubMed/NCBI | |
Zhang F, Li R, Yang Y, Shi C, Shen Y, Lu C, Chen Y, Zhou W, Lin A, Yu L, et al: Specific decrease in B-cell-derived extracellular vesicles enhances post-chemotherapeutic CD8+ T cell responses. Immunity. 50:738–750.e7. 2019. View Article : Google Scholar | |
Yang Z, Wang W, Zhao L, Wang X, Gimple RC, Xu L, Wang Y, Rich JN and Zhou S: Plasma cells shape the mesenchymal identity of ovarian cancers through transfer of exosome-derived microRNAs. Sci Adv. 7:eabb07372021. View Article : Google Scholar : PubMed/NCBI | |
Aguilar-Cazares D, Chavez-Dominguez R, Carlos-Reyes A, Lopez-Camarillo C, Hernadez de la Cruz ON and Lopez-Gonzalez JS: Contribution of angiogenesis to inflammation and cancer. Front Oncol. 9:13992019. View Article : Google Scholar | |
Dominiak A, Chełstowska B, Olejarz W and Nowicka G: Communication in the cancer microenvironment as a target for therapeutic interventions. Cancers (Basel). 12:12322020. View Article : Google Scholar : PubMed/NCBI | |
Stec M, Baj-Krzyworzeka M, Baran J, Węglarczyk K and Zembala M, Barbasz J, Szczepanik A and Zembala M: Isolation and characterization of circulating micro(nano)vesicles in the plasma of colorectal cancer patients and their interactions with tumor cells. Oncol Rep. 34:2768–2775. 2015. View Article : Google Scholar : PubMed/NCBI | |
Aslan C, Maralbashi S, Salari F, Kahroba H, Sigaroodi F, Kazemi T and Kharaziha P: Tumor-derived exosomes: Implication in angiogenesis and antiangiogenesis cancer therapy. J Cell Physiol. 234:16885–16903. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhao Z, Sun W, Guo Z, Zhang J, Yu H and Liu B: Mechanisms of lncRNA/microRNA interactions in angiogenesis. Life Sci. 254:1169002020. View Article : Google Scholar | |
Folkman J, Merler E, Abernathy C and Williams G: Isolation of a tumor factor responsible for angiogenesis. J Exp Med. 133:275–288. 1971. View Article : Google Scholar : PubMed/NCBI | |
Weinstein N, Mendoza L, Gitler I and Klapp J: A Network model to explore the effect of the Micro-environment on endothelial cell behavior during angiogenesis. Front Physiol. 8:9602017. View Article : Google Scholar : PubMed/NCBI | |
Vavourakis V, Wijeratne PA, Shipley R, Loizidou M, Stylianopoulos T and Hawkes DJ: A validated multiscale In-silico model for mechano-sensitive tumour angiogenesis and growth. PLoS Comput Biol. 13:e10052592017. View Article : Google Scholar : PubMed/NCBI | |
Varberg KM, Winfree S, Dunn KW and Haneline LS: Kinetic analysis of vasculogenesis quantifies dynamics of vasculogenesis and angiogenesis in vitro. J Vis Exp. 57044:2018. View Article : Google Scholar | |
Ludwig N and Whiteside TL: Potential roles of tumor-derived exosomes in angiogenesis. Expert Opin Ther Targets. 22:409–417. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kucharzewska P, Christianson HC, Welch JE, Svensson KJ, Fredlund E, Ringnér M, Mörgelin M, Bourseau-Guilmain E, Bengzon J and Belting M: Exosomes reflect the hypoxic status of glioma cells and mediate hypoxia-dependent activation of vascular cells during tumor development. Proc Natl Acad Sci USA. 110:7312–7317. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kaur B, Cork SM, Sandberg EM, Devi NS, Zhang Z, Klenotic PA, Febbraio M, Shim H, Mao H, Tucker-Burden C, et al: Vasculostatin inhibits intracranial glioma growth and negatively regulates in vivo angiogenesis through a CD36-dependent mechanism. Cancer Res. 69:1212–1220. 2009. View Article : Google Scholar : PubMed/NCBI | |
Taverna S, Flugy A, Saieva L, Kohn EC, Santoro A, Meraviglia S, De Leo G and Alessandro R: Role of exosomes released by chronic myelogenous leukemia cells in angiogenesis. Int J Cancer. 130:2033–2043. 2012. View Article : Google Scholar | |
Siemann DW and Horsman MR: Modulation of the tumor vasculature and oxygenation to improve therapy. Pharmacol Ther. 153:107–124. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hida K, Maishi N, Annan DA and Hida Y: Contribution of tumor endothelial cells in cancer progression. Int J Mol Sci. 19:12722018. View Article : Google Scholar : PubMed/NCBI | |
Mao Y, Wang Y, Dong L, Zhang Y, Zhang Y, Wang C, Zhang Q, Yang S, Cao L, Zhang X, et al: Hypoxic exosomes facilitate angiogenesis and metastasis in esophageal squamous cell carcinoma through altering the phenotype and transcriptome of endothelial cells. Int J Mol Sci. 38:3892019. | |
Hsu YL, Hung JY, Chang WA, Lin YS, Pan YC, Tsai PH, Wu CY and Kuo PL: Hypoxic lung cancer-secreted exosomal miR-23a increased angiogenesis and vascular permeability by targeting prolyl hydroxylase and tight junction protein ZO-1. Oncogene. 36:4929–4942. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sruthi TV, Edatt L, Raji GR, Kunhiraman H, Shankar SS, Shankar V, Ramachandran V, Poyyakkara A and Kumar SVB: Horizontal transfer of miR-23a from hypoxic tumor cell colonies can induce angiogenesis. J Cell Physiol. 233:3498–3514. 2018. View Article : Google Scholar | |
Gesierich S, Berezovskiy I, Ryschich E and Zöller M: Systemic induction of the angiogenesis switch by the tetraspanin D6.1A/CO-029. Cancer Res. 66:7083–7094. 2006. View Article : Google Scholar : PubMed/NCBI | |
Sheldon H, Heikamp E, Turley H, Dragovic R, Thomas P, Oon CE, Leek R, Edelmann M, Kessler B, Sainson RCA, et al: New mechanism for Notch signaling to endothelium at a distance by Delta-like 4 incorporation into exosomes. Blood. 116:2385–2394. 2010. View Article : Google Scholar : PubMed/NCBI | |
Tang MKS, Yue PYK, Ip PP, Huang RL, Lai HC, Cheung ANY, Tse KY, Ngan HYS and Wong AST: Soluble E-cadherin promotes tumor angiogenesis and localizes to exosome surface. Nature Commun. 9:22702018. View Article : Google Scholar | |
Svensson KJ, Kucharzewska P, Christianson HC, Sköld S, Löfstedt T, Johansson MC, Mörgelin M, Bengzon J, Ruf W and Belting M: Hypoxia triggers a proangiogenic pathway involving cancer cell microvesicles and PAR-2-mediated heparin-binding EGF signaling in endothelial cells. Proc Natl Acad Sci USA. 108:13147–13152. 2011. View Article : Google Scholar : PubMed/NCBI | |
Umezu T, Tadokoro H, Azuma K, Yoshizawa S, Ohyashiki K and Ohyashiki JH: Exosomal miR-135b shed from hypoxic multiple myeloma cells enhances angiogenesis by targeting factor-inhibiting HIF-1. Blood. 124:3748–3757. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wu D, Deng S, Li L, Liu T, Zhang T, Li J, Yu Y and Xu Y: TGF-β1-mediated exosomal lnc-MMP2-2 increases blood-brain barrier permeability via the miRNA-1207-5p/EPB41L5 axis to promote non-small cell lung cancer brain metastasis. Cell Death Dis. 12:7212021. View Article : Google Scholar | |
Dou R, Liu K, Yang C, Zheng J, Shi D, Lin X, Wei C, Zhang C, Fang Y, Huang S, et al: EMT-cancer cells-derived exosomal miR-27b-3p promotes circulating tumour cells-mediated metastasis by modulating vascular permeability in colorectal cancer. Cell Death Dis. 11:e5952021. | |
Liu K, Dou R, Yang C, Di Z, Shi D, Zhang C, Song J, Fang Y, Huang S, Xiang Z, et al: Exosome-transmitted miR-29a induces colorectal cancer metastasis by destroying the vascular endothelial barrier. Carcinogenesis. 44:356–367. 2023. View Article : Google Scholar : PubMed/NCBI | |
Xu Y, Leng K, Yao Y, Kang P, Liao G, Han Y, Shi G, Ji D, Huang P, Zheng W, et al: Circular RNA, Cholangiocarcinoma-associated circular RNA 1, contributes to Cholangiocarcinoma progression, induces angiogenesis, and disrupts vascular endothelial barriers. Hepatology. 73:1419–1435. 2021. View Article : Google Scholar | |
Li K, Xue W, Lu Z, Wang S, Zheng J, Lu K, Li M, Zong Y, Xu F, Dai J, et al: Tumor-derived exosomal ADAM17 promotes pre-metastatic niche formation by enhancing vascular permeability in colorectal cancer. J Exp Clin Cancer Res. 43:592024. View Article : Google Scholar : PubMed/NCBI | |
Nazarenko I, Rana S, Baumann A, McAlear J, Hellwig A, Trendelenburg M, Lochnit G, Preissner KT and Zöller M: Cell surface tetraspanin Tspan8 contributes to molecular pathways of exosome-induced endothelial cell activation. Cancer Res. 70:1668–1678. 2010. View Article : Google Scholar : PubMed/NCBI | |
Hood JL, San RS and Wickline SA: Exosomes released by melanoma cells prepare sentinel lymph nodes for tumor metastasis. Cancer Res. 71:3792–3801. 2011. View Article : Google Scholar : PubMed/NCBI | |
Akoto T and Saini S: Role of exosomes in prostate cancer metastasis. Int J Mol Sci. 22:35282021. View Article : Google Scholar : PubMed/NCBI | |
Peinado H, Alečković M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G, Hergueta-Redondo M, Williams C, García-Santos G, Ghajar C, et al: Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med. 18:883–891. 2012. View Article : Google Scholar : PubMed/NCBI | |
Valencia K, Luis-Ravelo D, Bovy N, Antón I, Martínez-Canarias S, Zandueta C, Ormazábal C, Struman I, Tabruyn S, Rebmann V, et al: miRNA cargo within exosome-like vesicle transfer influences metastatic bone colonization. Mol Oncol. 8:689–703. 2014. View Article : Google Scholar : PubMed/NCBI | |
You L, Wu W, Wang X, Fang L, Adam V, Nepovimova E, Wu Q and Kuca K: The role of hypoxia-inducible factor 1 in tumor immune evasion. Med Res Rev. 41:1622–1643. 2021. View Article : Google Scholar | |
Mu W, Rana S and Zöller M: Host matrix modulation by tumor exosomes promotes motility and invasiveness. Neoplasia. 15:875–887. 2013. View Article : Google Scholar : PubMed/NCBI | |
Xie M, Yu T, Jing X, Ma L, Fan Y, Yang F, Ma P, Jiang H, Wu X, Shu Y and Xu T: Exosomal circSHKBP1 promotes gastric cancer progression via regulating the miR-582-3p/HUR/VEGF axis and suppressing HSP90 degradation. Mol Cancer. 19:1122020. View Article : Google Scholar : PubMed/NCBI | |
Gomes FG, Sandim V, Almeida VH, Rondon AMR, Succar BB, Hottz ED, Leal AC, Verçoza BRF, Rodrigues JCF, Bozza PT, et al: Breast-cancer extracellular vesicles induce platelet activation and aggregation by tissue factor-independent and -dependent mechanisms. Thromb Res. 159:24–32. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Zhang H, Gu J, Zhang J, Shi H, Qian H, Wang D, Xu W, Pan J and Santos HA: Engineered extracellular vesicles for cancer therapy. Adv Mater. 33:e20057092021. View Article : Google Scholar : PubMed/NCBI | |
Peterson MF, Otoc N, Sethi JK, Gupta A and Antes TJ: Integrated systems for exosome investigation. Methods. 87:31–45. 2015. View Article : Google Scholar : PubMed/NCBI | |
Contreras-Naranjo JC, Wu HJ and Ugaz VM: Microfluidics for exosome isolation and analysis: Enabling liquid biopsy for personalized medicine. Lab Chip. 17:3558–3577. 2017. View Article : Google Scholar : PubMed/NCBI | |
Casadei L, Choudhury A, Sarchet P, Mohana Sundaram P, Lopez G, Braggio D, Balakirsky G, Pollock R and Prakash S: Cross-flow microfiltration for isolation selective capture and release of liposarcoma extracellular vesicles. J Extracell Vesicles. 10:e120622021. View Article : Google Scholar | |
Huang X, Wu W, Jing D, Yang L, Guo H, Wang L, Zhang W, Pu F and Shao Z: Engineered exosome as targeted lncRNA MEG3 delivery vehicles for osteosarcoma therapy. J Control Release. 343:107–117. 2022. View Article : Google Scholar : PubMed/NCBI | |
Lu Y, Li L, Lin Z, Li M, Hu X, Zhang Y, Peng M, Xia H and Han G: Enhancing osteosarcoma killing and CT imaging using ultrahigh drug loading and NIR-responsive bismuth Sulfide@ Mesoporous silica nanoparticles. Adv Healthc Mater. 7:e18006022018. View Article : Google Scholar | |
Raghav KP, Wang W, Liu S, Chavez-MacGregor M, Meng X, Hortobagyi GN, Mills GB, Meric-Bernstam F, Blumenschein GR and Gonzalez-Angulo AM: cMET and Phospho-cMET protein levels in breast cancers and survival outcomes. Clin Cancer Res. 18:2269–2277. 2012. View Article : Google Scholar : PubMed/NCBI | |
Li S, Wu Y, Ding F, Yang J, Li J, Gao X, Zhang C and Feng J: Engineering macrophage-derived exosomes for targeted chemotherapy of triple-negative breast cancer. Nanoscale. 12:10854–10862. 2020. View Article : Google Scholar : PubMed/NCBI | |
Gonçalves MS: Fluorescent labeling of biomolecules with organic probes. Clin Cancer Res. 109:190–212. 2009. | |
Gray WD, Mitchell AJ and Searles CD: An accurate, precise method for general labeling of extracellular vesicles. MethodsX. 2:360–367. 2015. View Article : Google Scholar : PubMed/NCBI | |
Takahashi Y, Nishikawa M, Shinotsuka H, Matsui Y, Ohara S, Imai T and Takakura Y: Visualization and in vivo tracking of the exosomes of murine melanoma B16-BL6 cells in mice after intravenous injection. J Biotechnol. 165:77–84. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lai CP, Mardini O, Ericsson M, Prabhakar S, Maguire C, Chen JW, Tannous BA and Breakefield XO: Dynamic biodistribution of extracellular vesicles in vivo using a multimodal imaging reporter. ACS Nano. 8:483–494. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bose RJC, Uday Kumar S, Zeng Y, Afjei R, Robinson E, Lau K, Bermudez A, Habte F, Pitteri SJ, Sinclair R, et al: Tumor cell-derived extracellular vesicle-coated nanocarriers: An efficient theranostic platform for the cancer-specific delivery of anti-miR-21 and imaging agents. ACS Nano. 12:10817–10832. 2018. View Article : Google Scholar : PubMed/NCBI | |
Cao Y, Wu T, Zhang K, Meng X, Dai W, Wang D, Dong H and Zhang X: Engineered exosome-mediated near-infrared-II region V(2)C quantum dot delivery for nucleus-target low-temperature photothermal therapy. ACS Nano. 13:1499–1510. 2019.PubMed/NCBI | |
Anguela XM and High KA: Entering the modern era of gene therapy. Annu Rev Med. 70:273–288. 2019. View Article : Google Scholar | |
Lee YS and Dutta A: MicroRNAs in cancer. Annu Rev Pathol. 4:199–227. 2009. View Article : Google Scholar : | |
Paunovska K, Loughrey D and Dahlman JE: Drug delivery systems for RNA therapeutics. Natu Rev Genet. 23:265–280. 2022. View Article : Google Scholar | |
Rupaimoole R and Slack FJ: MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 16:203–222. 2017. View Article : Google Scholar : PubMed/NCBI | |
Winkle M, El-Daly SM, Fabbri M and Calin GA: Noncoding RNA therapeutics-challenges and potential solutions. Nat Rev Drug Discov. 20:629–651. 2021. View Article : Google Scholar : PubMed/NCBI | |
Bose RJ, Kumar US, Garcia-Marques F, Zeng Y, Habte F, McCarthy JR, Pitteri S, Massoud TF and Paulmurugan R: Engineered cell-derived vesicles displaying targeting peptide and functionalized with nanocarriers for therapeutic microRNA delivery to triple-negative breast cancer in mice. Adv Healthc Mater. 11:e21013872022. View Article : Google Scholar : | |
Olejarz W, Kubiak-Tomaszewska G, Chrzanowska A and Lorenc T: Exosomes in Angiogenesis and Anti-angiogenic therapy in cancers. Int J Mol Sci. 21:58402020. View Article : Google Scholar : PubMed/NCBI | |
Ghafouri-Fard S, Shoorei H, Mohaqiq M and Taheri M: Non-coding RNAs regulate angiogenic processes. Vascular Pharmacol. 133-134:1067782020. View Article : Google Scholar | |
Yuan Y, Mei Z, Qu Z, Li G, Yu S, Liu Y, Liu K, Shen Z, Pu J, Wang Y, et al: Exosomes secreted from cardiomyocytes suppress the sensitivity of tumor ferroptosis in ischemic heart failure. Signal Transduct Target Ther. 8:1212023. View Article : Google Scholar : PubMed/NCBI | |
Caller T, Rotem I, Shaihov-Teper O, Lendengolts D, Schary Y, Shai R, Glick-Saar E, Dominissini D, Motiei M, Katzir I, et al: Small extracellular vesicles from infarcted and failing heart accelerate tumor growth. Circulation. 149:1729–1748. 2024. View Article : Google Scholar : PubMed/NCBI |