1
|
Miller DT, Freedenberg D, Schorry E,
Ullrich NJ, Viskochil D and Korf BR; Council on Genetics and
American College of Medical Genetics and Genomics: Health
supervision for children with neurofibromatosis type 1. Pediatrics.
143:e201906602019. View Article : Google Scholar : PubMed/NCBI
|
2
|
Acar S, Armstrong AE and Hirbe AC:
Plexiform neurofibroma: Shedding light on the investigational
agents in clinical trials. Expert Opin Investig Drugs. 31:31–40.
2021. View Article : Google Scholar : PubMed/NCBI
|
3
|
Fisher MJ, Blakeley JO, Weiss BD, Dombi E,
Ahlawat S, Akshintala S, Belzberg AJ, Bornhorst M, Bredella MA, Cai
W, et al: Management of neurofibromatosis type 1-associated
plexiform neurofibromas. Neuro Oncol. 24:1827–1844. 2022.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Gross AM, Glassberg B, Wolters PL, Dombi
E, Baldwin A, Fisher MJ, Kim A, Bornhorst M, Weiss BD, Blakeley JO,
et al: Selumetinib in children with neurofibromatosis type 1 and
asymptomatic inoperable plexiform neurofibroma at risk for
developing tumor-related morbidity. Neuro Oncol. 24:1978–1988.
2022. View Article : Google Scholar : PubMed/NCBI
|
5
|
Zhu B, Zheng T, Wang W, Gu Y, Wei C, Li Q
and Wang Z: Genotype-phenotype correlations of neurofibromatosis
type 1: A cross-sectional study from a large Chinese cohort. J
Neurol. 271:1893–1900. 2024. View Article : Google Scholar
|
6
|
Zhu B, Wei C, Wang W, Gu B, Li Q and Wang
Z: Treatment and progress of cutaneous neurofibroma. Zhongguo Xiu
Fu Chong Jian Wai Ke Za Zhi. 36:1064–1071. 2022.In Chinese.
PubMed/NCBI
|
7
|
Dombi E, Baldwin A, Marcus LJ, Fisher MJ,
Weiss B, Kim A, Whitcomb P, Martin S, Aschbacher-Smith LE, Rizvi
TA, et al: Activity of selumetinib in neurofibromatosis type
1-related plexiform neurofibromas. N Engl J Med. 375:2550–2560.
2016. View Article : Google Scholar : PubMed/NCBI
|
8
|
Gross AM, Wolters PL, Dombi E, Baldwin A,
Whitcomb P, Fisher MJ, Weiss B, Kim A, Bornhorst M, Shah AC, et al:
Selumetinib in children with inoperable plexiform neurofibromas. N
Engl J Med. 382:1430–1442. 2020. View Article : Google Scholar : PubMed/NCBI
|
9
|
Eniafe J and Jiang S: The functional roles
of TCA cycle metabolites in cancer. Oncogene. 40:3351–3363. 2021.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Chen YM, Chen W, Xu Y, Lu CS, Zhu MM, Sun
RY, Wang Y, Chen Y, Shi J and Wang D: Novel compound heterozygous
SUCLG1 variants may contribute to mitochondria DNA depletion
syndrome-9. Mol Genet Genomic Med. 10:e20102022. View Article : Google Scholar : PubMed/NCBI
|
11
|
Ramsheh S, Omidvar ME, Tabasinezhad M,
Alipoor B, Salmani TA and Ghaedi H: SUCLG1 mutations and
mitochondrial encephalomyopathy: A case study and review of the
literature. Mol Biol Rep. 47:9699–9714. 2020. View Article : Google Scholar
|
12
|
Yan W, Xie C, Sun S, Zheng Q, Wang J, Wang
Z, Man CH, Wang H, Yang Y, Wang T, et al: SUCLG1 restricts POLRMT
succinylation to enhance mitochondrial biogenesis and leukemia
progression. EMBO J. 43:2337–2367. 2024. View Article : Google Scholar : PubMed/NCBI
|
13
|
Icard P, Simula L, Zahn G, Alifano M and
Mycielska ME: The dual role of citrate in cancer. Biochim Biophys
Acta Rev Cancer. 1878:1889872023. View Article : Google Scholar : PubMed/NCBI
|
14
|
Arnold PK, Jackson BT, Paras KI, Brunner
JS, Hart ML, Newsom OJ, Alibeckoff SP, Endress J, Drill E, Sullivan
LB and Finley LWS: A non-canonical tricarboxylic acid cycle
underlies cellular identity. Nature. 603:477–481. 2022. View Article : Google Scholar : PubMed/NCBI
|
15
|
Schmittgen TD and Livak KJ: Analyzing
real-time PCR data by the comparative C(T) method. Nat Protoc.
3:1101–1108. 2008. View Article : Google Scholar : PubMed/NCBI
|
16
|
Thoudam T, Chanda D, Sinam IS, Kim BG, Kim
MJ, Oh CJ, Lee JY, Kim MJ, Park SY, Lee SY, et al: Noncanonical
PDK4 action alters mitochondrial dynamics to affect the cellular
respiratory status. Proc Natl Acad Sci USA. 119:e21201571192022.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Well L, Döbel K, Kluwe L, Bannas P,
Farschtschi S, Adam G, Mautner VF and Salamon J: Genotype-phenotype
correlation in neurofibromatosis type-1: NF1 whole gene deletions
lead to high tumor-burden and increased tumor-growth. PLOS Genet.
17:e10095172021. View Article : Google Scholar : PubMed/NCBI
|
18
|
Bernier A, Larbrisseau A and Perreault S:
Cafe-au-lait macules and neurofibromatosis type 1: A review of the
literature. Pediatr Neurol. 60:24–29.e1. 2016. View Article : Google Scholar
|
19
|
Nicoli TK, Saat R, Tarkkanen J, Kinnunen
I, Mäkitie AA and Jero J: Challenging management of plexiform
schwannoma and plexiform neurofibroma. J Craniofac Surg.
33:803–808. 2022. View Article : Google Scholar
|
20
|
Avery RA, Katowitz JA, Fisher MJ, Heidary
G, Dombi E, Packer RJ and Widemann BC; OPPN Working Group:
Orbital/periorbital plexiform neurofibromn children with
neurofibromatosis type 1: Multidisciplinary recommendations for
care. Ophthalmology. 124:123–132. 2017. View Article : Google Scholar
|
21
|
Wang W, Gu Y, Zhu B, et al: Retrospective
study of surgical treatment in 121 patients with head and neck
plexiform neurofibromas. Chin J Plast Surg. 35:169–178. 2024.
|
22
|
Jackson S, Baker EH, Gross AM, Whitcomb P,
Baldwin A, Derdak J, Tibery C, Desanto J, Carbonell A, Yohay K, et
al: The MEK inhibitor selumetinib reduces spinal neurofibroma
burden in patients with NF1 and plexiform neurofibromas. Neurooncol
Adv. 2:vdaa0952020.PubMed/NCBI
|
23
|
Veres K, Bene J, Hadzsiev K, Garami M,
Pálla S, Happle R, Medvecz M and Szalai ZZ: Superimposed mosaicism
in the form of extremely extended segmental plexiform neurofibroma
caused by a novel pathogenic variant in the NF1 gene. Int J Mol
Sci. 24:121542023. View Article : Google Scholar : PubMed/NCBI
|
24
|
Wang D, Ge L, Guo Z, Li Y, Zhu B, Wang W,
Wei C, Li Q and Wang Z: Efficacy and safety of trametinib in
neurofibromatosis type 1-associated plexiform neurofibroma and
low-grade glioma: A systematic review and meta-analysis.
Pharmaceuticals (Basel). 15:9562022. View Article : Google Scholar : PubMed/NCBI
|
25
|
Armstrong AE, Belzberg AJ, Crawford JR,
Hirbe AC and Wang ZJ: Treatment decisions and the use of MEK
inhibitors for children with neurofibromatosis type 1-related
plexiform neurofibromas. BMC Cancer. 23:5532023. View Article : Google Scholar : PubMed/NCBI
|
26
|
Weiss BD, Wolters PL, Plotkin SR, Widemann
BC, Tonsgard JH, Blakeley J, Allen JC, Schorry E, Korf B, Robison
NJ, et al: NF106: A neurofibromatosis clinical trials consortium
Phase II trial of the MEK inhibitor Mirdametinib (PD-0325901) in
adolescents and adults with NF1-related plexiform neurofibromas. J
Clin Oncol. 39:797–806. 2021. View Article : Google Scholar : PubMed/NCBI
|
27
|
Rizzo D, Ruggiero A, Amato M, Maurizi P
and Riccardi R: BRAF and MEK inhibitors in pediatric glioma: New
therapeutic strategies, new toxicities. Expert Opin Drug Metab
Toxicol. 12:1397–1405. 2016. View Article : Google Scholar : PubMed/NCBI
|
28
|
Fisher MJ, Shih CS, Rhodes SD, Armstrong
AE, Wolters PL, Dombi E, Zhang C, Angus SP, Johnson GL, Packer RJ,
et al: Cabozantinib for neurofibromatosis type 1-related plexiform
neurofibromas: A phase 2 trial. Nat Med. 27:165–173. 2021.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Gross AM, Glassberg B, Wolters PL, Dombi
E, Baldwin A, Fisher MJ, Kim A, Bornhorst M, Weiss BD, Blakeley JO,
et al: Selumetinib in children with neurofibromatosis type 1 and
asymptomatic inoperable plexiform neurofibroma at risk for
developing tumor-related morbidity. Neuro Oncol. 24:1978–1988.
2022. View Article : Google Scholar : PubMed/NCBI
|
30
|
Chinopoulos C, Batzios S, van den Heuvel
LP, Rodenburg R, Smeets R, Waterham HR, Turkenburg M, Ruiter JP,
Wanders RJA, Doczi J, et al: Mutated SUCLG1 causes mislocalization
of SUCLG2 protein, morphological alterations of mitochondria and an
early-onset severe neurometabolic disorder. Mol Genet Metab.
126:43–52. 2019. View Article : Google Scholar
|
31
|
Ho GT and Theiss AL: Mitochondria and
inflammatory bowel diseases: Toward a stratified therapeutic
intervention. Annu Rev Physiol. 84:435–459. 2022. View Article : Google Scholar :
|
32
|
Sugiura A, Mclelland GL, Fon EA and
Mcbride HM: A new pathway for mitochondrial quality control:
Mitochondrial-derived vesicles. EMBO J. 33:2142–2156. 2014.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Zhang Z, Li TE, Chen M, Xu D, Zhu Y, Hu
BY, Lin ZF, Pan JJ, Wang X, Wu C, et al: MFN1-dependent alteration
of mitochondrial dynamics drives hepatocellular carcinoma
metastasis by glucose metabolic reprogramming. Br J Cancer.
122:209–220. 2020. View Article : Google Scholar :
|
34
|
You MH, Jeon MJ, Kim SR, Lee WK, Cheng SY,
Jang G, Kim TY, Kim WB, Shong YK and Kim WG: Mitofusin-2 modulates
the epithelial to mesenchymal transition in thyroid cancer
progression. Sci Rep. 11:20542021. View Article : Google Scholar : PubMed/NCBI
|
35
|
Wang Y, Wang Y, Liu W, Ding L, Zhang X,
Wang B, Tong Z, Yue X, Li C, Xu L, et al: TIM-4 orchestrates
mitochondrial homeostasis to promote lung cancer progression via
ANXA2/PI3K/AKT/OPA1 axis. Cell Death Dis. 14:1412023. View Article : Google Scholar : PubMed/NCBI
|
36
|
Roca-Portoles A and Tait SWG:
Mitochondrial quality control: From molecule to organelle. Cell Mol
Life Sci. 78:3853–3866. 2021. View Article : Google Scholar : PubMed/NCBI
|
37
|
Yao CH, Wang R, Wang Y, Kung CP, Weber JD
and Patti GJ: Mitochondrial fusion supports increased oxidative
phosphorylation during cell proliferation. ELife. 8:e413512019.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Vaupel P and Multhoff G: Revisiting the
Warburg effect: Historical dogma versus current understanding. J
Physiol. 599:1745–1757. 2021. View Article : Google Scholar
|
39
|
Wang Y and Patti GJ: The Warburg effect: A
signature of mitochondrial overload. Trends Cell Biol.
33:1014–1020. 2023. View Article : Google Scholar : PubMed/NCBI
|
40
|
Zhong X, He X, Wang Y, Hu Z, Huang H, Zhao
S, Wei P and Li D: Warburg effect in colorectal cancer: The
emerging roles in tumor microenvironment and therapeutic
implications. J Hematol Oncol. 15:1602022. View Article : Google Scholar : PubMed/NCBI
|