
Pathogenetic development, diagnosis and clinical therapeutic approaches for liver metastasis from colorectal cancer (Review)
- Authors:
- Zhenhua Jin
- Yin Li
- Hao Yi
- Menghui Wang
- Chaofeng Wang
- Shaokun Du
- Wenjuan Zeng
- Zhen Zong
-
Affiliations: Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China, Huan Kui Academy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China, Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China, The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China - Published online on: February 14, 2025 https://doi.org/10.3892/ijo.2025.5728
- Article Number: 22
-
Copyright: © Jin et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
Singh S, Gomez HJ, Thakkar S, Singh SP and Parihar AS: Overcoming acquired drug resistance to cancer therapies through targeted STAT3 inhibition. Int J Mol Sci. 24:47222023. View Article : Google Scholar : PubMed/NCBI | |
Yoshino T, Portnoy DC, Obermannová R, Bodoky G, Prausová J, Garcia-Carbonero R, Ciuleanu T, García-Alfonso P, Cohn AL, Van Cutsem E, et al: Biomarker analysis beyond angiogenesis: RAS/RAF mutation status, tumour sidedness, and second-line ramucirumab efficacy in patients with metastatic colorectal carcinoma from RAISE-a global phase III study. Ann Oncol. 30:124–131. 2019. View Article : Google Scholar | |
Stewart CL, Warner S, Ito K, Raoof M, Wu GX, Kessler J, Kim JY and Fong Y: Cytoreduction for colorectal metastases: Liver, lung, peritoneum, lymph nodes, bone, brain. When does it palliate, prolong survival, and potentially cure? Curr Probl Surg. 55:330–379. 2018. View Article : Google Scholar : PubMed/NCBI | |
Norén A, Sandström P, Gunnarsdottir K, Ardnor B, Isaksson B, Lindell G and Rizell M: Identification of inequalities in the selection of liver surgery for colorectal liver metastases in sweden. Scand J Surg. 107:294–301. 2018. View Article : Google Scholar : PubMed/NCBI | |
Margonis GA, Sergentanis TN, Ntanasis-Stathopoulos I, Andreatos N, Tzanninis IG, Sasaki K, Psaltopoulou T, Wang J, Buettner S, Papalois ΑE, et al: Impact of surgical margin width on recurrence and overall survival following R0 hepatic resection of colorectal metastases: A systematic review and Meta-analysis. Ann Surg. 267:1047–1055. 2018. View Article : Google Scholar | |
Qin S, Liu GJ, Huang M, Huang J, Luo Y, Wen Y, Wang Y and Chen L: The local efficacy and influencing factors of ultrasound-guided percutaneous microwave ablation in colorectal liver metastases: A review of a 4-year experience at a single center. Int J Hyperthermia. 36:36–43. 2019. View Article : Google Scholar | |
Paget S: The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev. 8:98–101. 1989.PubMed/NCBI | |
Peña C, García JM, Silva J, García V, Rodríguez R, Alonso I, Millán I, Salas C, de Herreros AG, Muñoz A and Bonilla F: E-cadherin and vitamin D receptor regulation by SNAIL and ZEB1 in colon cancer: Clinicopathological correlations. Hum Mol Genet. 14:3361–3370. 2005. View Article : Google Scholar : PubMed/NCBI | |
He X, Chen Z, Jia M and Zhao X: Downregulated E-cadherin expression indicates worse prognosis in Asian patients with colorectal cancer: Evidence from meta-analysis. PLoS One. 8:e708582013. View Article : Google Scholar : PubMed/NCBI | |
Toiyama Y, Yasuda H, Saigusa S, Tanaka K, Inoue Y, Goel A and Kusunoki M: Increased expression of Slug and Vimentin as novel predictive biomarkers for lymph node metastasis and poor prognosis in colorectal cancer. Carcinogenesis. 34:2548–2557. 2013. View Article : Google Scholar : PubMed/NCBI | |
Oh BY, Hong HK, Lee WY and Cho YB: Animal models of colorectal cancer with liver metastasis. Cancer Lett. 387:114–120. 2017. View Article : Google Scholar | |
Helling TS and Martin M: Cause of death from liver metastases in colorectal cancer. Ann Surg Oncol. 21:501–506. 2014. View Article : Google Scholar | |
Tsilimigras DI, Hyer JM, Bagante F, Guglielmi A, Ruzzenente A, Alexandrescu S, Poultsides G, Sasaki K, Aucejo F and Pawlik TM: Resection of colorectal liver metastasis: Prognostic impact of tumor burden vs KRAS mutational status. J Am Coll Surg. 232:590–598. 2021. View Article : Google Scholar : PubMed/NCBI | |
Tsilimigras DI, Brodt P, Clavien PA, Muschel RJ, D'Angelica MI, Endo I, Parks RW, Doyle M, de Santibañes E and Pawlik TM: Liver metastases. Nat Rev Dis Primers. 7:272021. View Article : Google Scholar : PubMed/NCBI | |
Tsilimigras DI, Ntanasis-Stathopoulos I, Bagante F, Moris D, Cloyd J, Spartalis E and Pawlik TM: Clinical significance and prognostic relevance of KRAS, BRAF, PI3K and TP53 genetic mutation analysis for resectable and unresectable colorectal liver metastases: A systematic review of the current evidence. Surg Oncol. 27:280–288. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhou H, Liu Z, Wang Y, Wen X, Amador EH, Yuan L, Ran X, Xiong L, Ran Y, Chen W and Wen Y: Colorectal liver metastasis: Molecular mechanism and interventional therapy. Signal Transduct Target Ther. 7:702022. View Article : Google Scholar : PubMed/NCBI | |
Yuzhalin AE and Yu D: Brain metastasis organotropism. Cold Spring Harb Perspect Med. 10:a0372422020. View Article : Google Scholar | |
Mielgo A and Schmid MC: Liver tropism in cancer: The hepatic metastatic niche. Cold Spring Harb Perspect Med. 10:a0372592020. View Article : Google Scholar | |
Yoon H, Sabate Del Rio J, Cho SW and Park TE: Recent advances in micro-physiological systems for investigating tumor metastasis and organotropism. Lab Chip. 24:1351–1366. 2024. View Article : Google Scholar : PubMed/NCBI | |
Milette S, Sicklick JK, Lowy AM and Brodt P: Molecular pathways: Targeting the microenvironment of liver metastases. Clin Cancer Res. 23:6390–6399. 2017. View Article : Google Scholar : PubMed/NCBI | |
Elsayes KM, Shaaban AM, Rothan SM, Javadi S, Madrazo BL, Castillo RP, Casillas VJ and Menias CO: A comprehensive approach to hepatic vascular disease. Radiographics. 37:813–836. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Huang S, Lu X, Huang Y and Chi P: Incidence of and risk factors for gastroepiploic lymph node involvement in patients with cancer of the transverse colon including the hepatic flexure. World J Surg. 45:1514–1525. 2021. View Article : Google Scholar : PubMed/NCBI | |
Poisson J, Lemoinne S, Boulanger C, Durand F, Moreau R, Valla D and Rautou PE: Liver sinusoidal endothelial cells: Physiology and role in liver diseases. J Hepatol. 66:212–227. 2017. View Article : Google Scholar | |
Zheng M and Tian Z: Liver-mediated adaptive immune tolerance. Front Immunol. 10:25252019. View Article : Google Scholar : PubMed/NCBI | |
Heymann F, Peusquens J, Ludwig-Portugall I, Kohlhepp M, Ergen C, Niemietz P, Martin C, van Rooijen N, Ochando JC, Randolph GJ, et al: Liver inflammation abrogates immunological tolerance induced by Kupffer cells. Hepatology. 62:279–291. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang D, Wang X, Si M, Yang J, Sun S, Wu H, Cui S, Qu X and Yu X: Exosome-encapsulated miRNAs contribute to CXCL12/CXCR4-induced liver metastasis of colorectal cancer by enhancing M2 polarization of macrophages. Cancer Lett. 474:36–52. 2020. View Article : Google Scholar : PubMed/NCBI | |
Feng W, Huang W, Chen J, Qiao C, Liu D, Ji X, Xie M, Zhang T, Wang Y, Sun M, et al: CXCL12-mediated HOXB5 overexpression facilitates Colorectal Cancer metastasis through transactivating CXCR4 and ITGB3. Theranostics. 11:2612–2633. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhao S, Mi Y, Zheng B, Wei P, Gu Y, Zhang Z, Xu Y, Cai S, Li X and Li D: Highly-metastatic colorectal cancer cell released miR-181a-5p-rich extracellular vesicles promote liver metastasis by activating hepatic stellate cells and remodelling the tumour microenvironment. J Extracell Vesicles. 11:e121862022. View Article : Google Scholar : PubMed/NCBI | |
Lamouille S, Xu J and Derynck R: Molecular mechanisms of Epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 15:178–196. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ang HL, Mohan CD, Shanmugam MK, Leong HC, Makvandi P, Rangappa KS, Bishayee A, Kumar AP and Sethi G: Mechanism of epithelial-mesenchymal transition in cancer and its regulation by natural compounds. Med Res Rev. 43:1141–1200. 2023. View Article : Google Scholar : PubMed/NCBI | |
Jayachandran J, Srinivasan H and Mani KP: Molecular mechanism involved in epithelial to mesenchymal transition. Arch Biochem Biophys. 710:1089842021. View Article : Google Scholar : PubMed/NCBI | |
Cho ES, Kang HE, Kim NH and Yook JI: Therapeutic implications of cancer epithelial-mesenchymal transition (EMT). Arch Pharm Res. 42:14–24. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang N, Ng AS, Cai S, Li Q, Yang L and Kerr D: Novel therapeutic strategies: Targeting epithelial-mesenchymal transition in colorectal cancer. Lancet Oncol. 22:e358–e368. 2021. View Article : Google Scholar : PubMed/NCBI | |
Kulus M, Farzaneh M, Bryja A, Zehtabi M, Azizidoost S, Abouali Gale Dari M, Golcar-Narenji A, Ziemak H, Chwarzyński M, Piotrowska-Kempisty H, et al: Phenotypic transitions the processes involved in regulation of growth and proangiogenic properties of stem cells, cancer stem cells and circulating tumor cells. Stem Cell Rev Rep. 20:967–979. 2024. View Article : Google Scholar : PubMed/NCBI | |
Akhurst RJ: From shape-shifting embryonic cells to oncology: The fascinating history of epithelial mesenchymal transition. Semin Cancer Biol. 96:100–114. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhou S, Xu H, Duan Y, Tang Q, Huang H and Bi F: Survival mechanisms of circulating tumor cells and their implications for cancer treatment. Cancer Metastasis Rev. 43:941–957. 2024. View Article : Google Scholar : PubMed/NCBI | |
Xie Q, Liu S, Zhang S, Liao L, Xiao Z, Wang S and Zhang P: Research progress on the multi-omics and survival status of circulating tumor cells. Clin Exp Med. 24:492024. View Article : Google Scholar : PubMed/NCBI | |
Gkountela S, Castro-Giner F, Szczerba BM, Vetter M, Landin J, Scherrer R, Krol I, Scheidmann MC, Beisel C, Stirnimann CU, et al: Circulating tumor cell clustering shapes DNA methylation to enable metastasis seeding. Cell. 176:98–112.e14. 2019. View Article : Google Scholar : PubMed/NCBI | |
Rozenberg JM, Buzdin AA, Mohammad T, Rakitina OA, Didych DA, Pleshkan VV and Alekseenko IV: Molecules promoting circulating clusters of cancer cells suggest novel therapeutic targets for treatment of metastatic cancers. Front Immunol. 14:10999212023. View Article : Google Scholar : PubMed/NCBI | |
Hou JM, Krebs M, Ward T, Sloane R, Priest L, Hughes A, Clack G, Ranson M, Blackhall F and Dive C: Circulating tumor cells as a window on metastasis biology in lung cancer. Am J Pathol. 178:989–996. 2011. View Article : Google Scholar : PubMed/NCBI | |
Francescangeli F, Magri V, De Angelis ML, De Renzi G, Gandini O, Zeuner A, Gazzaniga P and Nicolazzo C: Sequential isolation and characterization of single CTCs and large CTC clusters in metastatic colorectal cancer patients. Cancers (Basel). 13:63622021. View Article : Google Scholar : PubMed/NCBI | |
Leblanc R and Peyruchaud O: Metastasis: New functional implications of platelets and megakaryocytes. Blood. 128:24–31. 2016. View Article : Google Scholar : PubMed/NCBI | |
Plantureux L, Mège D, Crescence L, Carminita E, Robert S, Cointe S, Brouilly N, Ezzedine W, Dignat-George F, Dubois C and Panicot-Dubois L: The Interaction of platelets with colorectal cancer cells inhibits tumor growth but promotes metastasis. Cancer Res. 80:291–303. 2020. View Article : Google Scholar | |
Szczerba BM, Castro-Giner F, Vetter M, Krol I, Gkountela S, Landin J, Scheidmann MC, Donato C, Scherrer R, Singer J, et al: Neutrophils escort circulating tumour cells to enable cell cycle progression. Nature. 566:553–557. 2019. View Article : Google Scholar : PubMed/NCBI | |
Duda DG, Duyverman AM, Kohno M, Snuderl M, Steller EJ, Fukumura D and Jain RK: Malignant cells facilitate lung metastasis by bringing their own soil. Proc Natl Acad Sci USA. 107:21677–21682. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ormseth B, Onuma A, Zhang H and Tsung A: The hepatic Pre-metastatic niche. Cancers (Basel). 14:37312022. View Article : Google Scholar : PubMed/NCBI | |
Trefts E, Gannon M and Wasserman DH: The liver. Curr Biol. 27:R1147–R1151. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li X, Ramadori P, Pfister D, Seehawer M, Zender L and Heikenwalder M: The immunological and metabolic landscape in primary and metastatic liver cancer. Nat Rev Cancer. 21:541–557. 2021. View Article : Google Scholar : PubMed/NCBI | |
Gong J, Tu W, Liu J and Tian D: Hepatocytes: A key role in liver inflammation. Front Immunol. 13:10837802022. View Article : Google Scholar | |
Carvalho-Gontijo R, Han C, Zhang L, Zhang V, Hosseini M, Mekeel K, Schnabl B, Loomba R, Karin M, Brenner DA and Kisseleva T: Metabolic injury of hepatocytes promotes progression of NAFLD and AALD. Semin Liver Dis. 42:233–249. 2022. View Article : Google Scholar : PubMed/NCBI | |
Rigual MDM, Sanchez Sanchez P and Djouder N: Is liver regeneration key in hepatocellular carcinoma development? Trends Cancer. 9:140–157. 2023. View Article : Google Scholar | |
Amilca-Seba K, Sabbah M, Larsen AK and Denis JA: Osteopontin as a regulator of colorectal cancer progression and its clinical applications. Cancers (Basel). 13:37932021. View Article : Google Scholar : PubMed/NCBI | |
Li JJ, Wang JH, Tian T, Liu J, Zheng YQ, Mo HY, Sheng H, Chen YX, Wu QN, Han Y, et al: The liver microenvironment orchestrates FGL1-mediated immune escape and progression of metastatic colorectal cancer. Nat Commun. 14:66902023. View Article : Google Scholar : PubMed/NCBI | |
Pandey E, Nour AS and Harris EN: Prominent receptors of liver sinusoidal endothelial cells in liver homeostasis and disease. Front Physiol. 11:8732020. View Article : Google Scholar : PubMed/NCBI | |
Szafranska K, Kruse LD, Holte CF, McCourt P and Zapotoczny B: The wHole story about fenestrations in LSEC. Front Physiol. 12:7355732021. View Article : Google Scholar : PubMed/NCBI | |
Xu GX, Wei S, Yu C, Zhao SQ, Yang WJ, Feng YH, Pan C, Yang KX and Ma Y: Activation of Kupffer cells in NAFLD and NASH: Mechanisms and therapeutic interventions. Front Cell Dev Biol. 11:11995192023. View Article : Google Scholar : PubMed/NCBI | |
Li W, Chang N and Li L: Heterogeneity and function of kupffer cells in liver injury. Front Immunol. 13:9408672022. View Article : Google Scholar : PubMed/NCBI | |
Kubes P and Jenne C: Immune responses in the liver. Annu Rev Immunol. 36:247–277. 2018. View Article : Google Scholar : PubMed/NCBI | |
Matsumura H, Kondo T, Ogawa K, Tamura T, Fukunaga K, Murata S and Ohkohchi N: Kupffer cells decrease metastasis of colon cancer cells to the liver in the early stage. Int J Oncol. 45:2303–2310. 2014. View Article : Google Scholar : PubMed/NCBI | |
Williamson T, Sultanpuram N and Sendi H: The role of liver microenvironment in hepatic metastasis. Clin Transl Med. 8:212019. View Article : Google Scholar : PubMed/NCBI | |
Keirsse J, Van Damme H, Geeraerts X, Beschin A, Raes G and Van Ginderachter JA: The role of hepatic macrophages in liver metastasis. Cell Immunol. 330:202–215. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yang M and Zhang C: The role of liver sinusoidal endothelial cells in cancer liver metastasis. Am J Cancer Res. 11:1845–1860. 2021.PubMed/NCBI | |
Ou J, Peng Y, Deng J, Miao H, Zhou J, Zha L, Zhou R, Yu L, Shi H and Liang H: Endothelial cell-derived fibronectin extra domain A promotes colorectal cancer metastasis via inducing epithelial-mesenchymal transition. Carcinogenesis. 35:1661–1670. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ciner AT, Jones K, Muschel RJ and Brodt P: The unique immune microenvironment of liver metastases: Challenges and opportunities. Semin Cancer Biol. 71:143–156. 2021. View Article : Google Scholar | |
Yu X, Chen L, Liu J, Dai B, Xu G, Shen G, Luo Q and Zhang Z: Immune modulation of liver sinusoidal endothelial cells by melittin nanoparticles suppresses liver metastasis. Nat Commun. 10:5742019. View Article : Google Scholar : PubMed/NCBI | |
Crispe IN: The liver as a lymphoid organ. Annu Rev Immunol. 27:147–163. 2009. View Article : Google Scholar : PubMed/NCBI | |
Prager I, Liesche C, van Ooijen H, Urlaub D, Verron Q, Sandström N, Fasbender F, Claus M, Eils R, Beaudouin J, et al: NK cells switch from granzyme B to death receptor-mediated cytotoxicity during serial killing. J Exp Med. 216:2113–2127. 2019. View Article : Google Scholar : PubMed/NCBI | |
Shimasaki N, Jain A and Campana D: NK cells for cancer immunotherapy. Nat Rev Drug Discov. 19:200–218. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wiltrout RH: Regulation and antimetastatic functions of liver-associated natural killer cells. Immunol Rev. 174:63–76. 2000. View Article : Google Scholar : PubMed/NCBI | |
Lopez-Soto A, Gonzalez S, Smyth MJ and Galluzzi L: Control of Metastasis by NK Cells. Cancer Cell. 32:135–154. 2017. View Article : Google Scholar : PubMed/NCBI | |
Donadon M, Hudspeth K, Cimino M, Di Tommaso L, Preti M, Tentorio P, Roncalli M, Mavilio D and Torzilli G: Increased infiltration of natural killer and T cells in colorectal liver metastases improves patient overall survival. J Gastrointest Surg. 21:1226–1236. 2017. View Article : Google Scholar : PubMed/NCBI | |
Harmon C, Robinson MW, Hand F, Almuaili D, Mentor K, Houlihan DD, Hoti E, Lynch L, Geoghegan J and O'Farrelly C: Lactate-mediated acidification of tumor microenvironment induces apoptosis of Liver-resident NK cells in colorectal liver metastasis. Cancer Immunol Res. 7:335–346. 2019. View Article : Google Scholar | |
Stiff A, Trikha P, Mundy-Bosse B, McMichael E, Mace TA, Benner B, Kendra K, Campbell A, Gautam S, Abood D, et al: Nitric oxide production by Myeloid-derived suppressor cells plays a role in impairing Fc Receptor-mediated natural killer cell function. Clin Cancer Res. 24:1891–1904. 2018. View Article : Google Scholar : PubMed/NCBI | |
Song J, Song H, Wei H, Sun R, Tian Z and Peng H: Requirement of RORα for maintenance and antitumor immunity of liver-resident natural killer cells/ILC1s. Hepatology. 75:1181–1193. 2022. View Article : Google Scholar | |
Toffoli EC, van Vliet AA, Verheul HWM, van der Vliet HJ, Tuynman J, Spanholtz J and de Gruijl TD: Allogeneic NK cells induce monocyte-to-dendritic cell conversion, control tumor growth, and trigger a pro-inflammatory shift in patient-derived cultures of primary and metastatic colorectal cancer. J Immunother Cancer. 11:e0075542023. View Article : Google Scholar : PubMed/NCBI | |
Lin Y, Xu J and Lan H: Tumor-associated macrophages in tumor metastasis: Biological roles and clinical therapeutic applications. J Hematol Oncol. 12:762019. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Wang X, Zhang X and Xu W: The promising role of tumor-associated macrophages in the treatment of cancer. Drug Resist Updat. 73:1010412024. View Article : Google Scholar : PubMed/NCBI | |
Hou S, Zhao Y, Chen J, Lin Y and Qi X: Tumor-associated macrophages in colorectal cancer metastasis: Molecular insights and translational perspectives. J Transl Med. 22:622024. View Article : Google Scholar : PubMed/NCBI | |
Dou L, Shi X, He X and Gao Y: Macrophage phenotype and function in liver disorder. Front Immunol. 10:31122019. View Article : Google Scholar | |
Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, Gordon S, Hamilton JA, Ivashkiv LB, Lawrence T, et al: Macrophage activation and polarization: Nomenclature and experimental guidelines. Immunity. 41:14–20. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Zhu N, Su X, Gao Y and Yang R: Novel tumor-associated macrophage populations and subpopulations by single cell RNA sequencing. Front Immunol. 14:12647742023. View Article : Google Scholar | |
Liu Y, Zhang Q, Xing B, Luo N, Gao R, Yu K, Hu X, Bu Z, Peng J, Ren X and Zhang Z: Immune phenotypic linkage between colorectal cancer and liver metastasis. Cancer Cell. 40:424–437.e5. 2022. View Article : Google Scholar : PubMed/NCBI | |
Matusiak M, Hickey JW, van IDGP, Lu G, Kidziński L, Zhu S, Colburg DRC, Luca B, Phillips DJ, Brubaker SW, et al: Spatially segregated macrophage populations predict distinct outcomes in colon cancer. Cancer Discov. 14:1418–1439. 2024. View Article : Google Scholar : PubMed/NCBI | |
Xu C, Sun L, Jiang C, Zhou H, Gu L, Liu Y and Xu Q: SPP1, analyzed by bioinformatics methods, promotes the metastasis in colorectal cancer by activating EMT pathway. Biomed Pharmacother. 91:1167–1177. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sathe A, Mason K, Grimes SM, Zhou Z, Lau BT, Bai X, Su A, Tan X, Lee H, Suarez CJ, et al: Colorectal cancer metastases in the liver establish immunosuppressive spatial networking between tumor-sssociated SPP1+ macrophages and fibroblasts. Clin Cancer Res. 29:244–260. 2023. View Article : Google Scholar | |
Wu Y, Yang S, Ma J, Chen Z, Song G, Rao D, Cheng Y, Huang S, Liu Y, Jiang S, et al: Spatiotemporal immune landscape of colorectal cancer liver metastasis at single-cell level. Cancer Discov. 12:134–153. 2022. View Article : Google Scholar | |
Qi J, Sun H, Zhang Y, Wang Z, Xun Z, Li Z, Ding X, Bao R, Hong L, Jia W, et al: Single-cell and spatial analysis reveal interaction of FAP+ fibroblasts and SPP1+ macrophages in colorectal cancer. Nat Commun. 13:17422022. View Article : Google Scholar | |
Friedman SL: Hepatic stellate cells: Protean, multifunctional, and enigmatic cells of the liver. Physiol Rev. 88:125–172. 2008. View Article : Google Scholar : PubMed/NCBI | |
Nielsen SR, Quaranta V, Linford A, Emeagi P, Rainer C, Santos A, Ireland L, Sakai T, Sakai K, Kim YS, et al: Macrophage-secreted granulin supports pancreatic cancer metastasis by inducing liver fibrosis. Nat Cell Biol. 18:549–560. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kisseleva T and Brenner D: Molecular and cellular mechanisms of liver fibrosis and its regression. Nat Rev Gastroenterol Hepatol. 18:151–166. 2021. View Article : Google Scholar | |
Carloni V, Luong TV and Rombouts K: Hepatic stellate cells and extracellular matrix in hepatocellular carcinoma: More complicated than ever. Liver Int. 34:834–843. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ali E, Trailin A, Ambrozkiewicz F, Liska V and Hemminki K: Activated hepatic stellate cells in hepatocellular carcinoma: Their role as a potential target for future therapies. Int J Mol Sci. 23:152922022. View Article : Google Scholar : PubMed/NCBI | |
Liu H, Qiu F, Wang Y, Zeng Q, Liu C, Chen Y, Liang CL, Zhang Q, Han L, Dai Z, et al: CD8+CD122+PD-1+ tregs synergize with costimulatory blockade of CD40/CD154, but Not B7/CD28, to prolong murine allograft survival. Front Immunol. 10:3062019. View Article : Google Scholar : PubMed/NCBI | |
Hsieh CC, Hung CH, Chiang M, Tsai YC and He JT: Hepatic stellate cells enhance liver cancer progression by inducing myeloid-derived suppressor cells through Interleukin-6 signaling. Int J Mol Sci. 20:50792019. View Article : Google Scholar : PubMed/NCBI | |
Assudani DP, Horton RB, Mathieu MG, McArdle SE and Rees RC: The role of CD4+ T cell help in cancer immunity and the formulation of novel cancer vaccines. Cancer Immunol Immunother. 56:70–80. 2007. View Article : Google Scholar | |
Lee HG, Cho MJ and Choi JM: Bystander CD4+ T cells: Crossroads between innate and adaptive immunity. Exp Mol Med. 52:1255–1263. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chalmin F, Mignot G, Bruchard M, Chevriaux A, Végran F, Hichami A, Ladoire S, Derangère V, Vincent J, Masson D, et al: Stat3 and Gfi-1 transcription factors control Th17 cell immunosuppressive activity via the regulation of ectonucleotidase expression. Immunity. 36:362–373. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kroemer M, Turco C, Spehner L, Viot J, Idirène I, Bouard A, Renaude E, Deschamps M, Godet Y, Adotévi O, et al: Investigation of the prognostic value of CD4 T cell subsets expanded from tumor-infiltrating lymphocytes of colorectal cancer liver metastases. J Immunother Cancer. 8:e0014782020. View Article : Google Scholar : PubMed/NCBI | |
Tosolini M, Kirilovsky A, Mlecnik B, Fredriksen T, Mauger S, Bindea G, Berger A, Bruneval P, Fridman WH, Pagès F and Galon J: Clinical impact of different classes of infiltrating T cytotoxic and helper cells (Th1, th2, treg, th17) in patients with colorectal cancer. Cancer Res. 71:1263–1271. 2011. View Article : Google Scholar : PubMed/NCBI | |
Farhood B, Najafi M and Mortezaee K: CD8+ cytotoxic T lymphocytes in cancer immunotherapy: A review. J Cell Physiol. 234:8509–8521. 2019. View Article : Google Scholar | |
St Paul M and Ohashi PS: The roles of CD8+ T cell subsets in antitumor immunity. Trends Cell Biol. 30:695–704. 2020. View Article : Google Scholar : PubMed/NCBI | |
Khan O, Giles JR, McDonald S, Manne S, Ngiow SF, Patel KP, Werner MT, Huang AC, Alexander KA, Wu JE, et al: TOX transcriptionally and epigenetically programs CD8+ T cell exhaustion. Nature. 571:211–218. 2019. View Article : Google Scholar : PubMed/NCBI | |
Oshi M, Asaoka M, Tokumaru Y, Yan L, Matsuyama R, Ishikawa T, Endo I and Takabe K: CD8 T cell score as a prognostic biomarker for triple negative breast cancer. Int J Mol Sci. 21:69682020. View Article : Google Scholar : PubMed/NCBI | |
Voskoboinik I, Whisstock JC and Trapani JA: Perforin and granzymes: Function, dysfunction and human pathology. Nat Rev Immunol. 15:388–400. 2015. View Article : Google Scholar : PubMed/NCBI | |
Masuda K, Kornberg A, Miller J, Lin S, Suek N, Botella T, Secener KA, Bacarella AM, Cheng L, Ingham M, et al: Multiplexed single-cell analysis reveals prognostic and nonprognostic T cell types in human colorectal cancer. JCI Insight. 7:e1546462022. View Article : Google Scholar : PubMed/NCBI | |
Doherty DG: Immunity, tolerance and autoimmunity in the liver: A comprehensive review. J Autoimmun. 66:60–75. 2016. View Article : Google Scholar | |
Blank CU, Haining WN, Held W, Hogan PG, Kallies A, Lugli E, Lynn RC, Philip M, Rao A, Restifo NP, et al: Defining 'T cell exhaustion'. Nat Rev Immunol. 19:665–674. 2019. View Article : Google Scholar : PubMed/NCBI | |
Freitas-Lopes MA, Mafra K, David BA, Carvalho-Gontijo R and Menezes GB: Differential location and distribution of hepatic immune cells. Cells. 6:482017. View Article : Google Scholar : PubMed/NCBI | |
Li H and Xia N: The multifaceted roles of B lymphocytes in metabolic dysfunction-associated steatotic liver disease. Front Immunol. 15:14473912024. View Article : Google Scholar : PubMed/NCBI | |
Xu Y, Wei Z, Feng M, Zhu D, Mei S, Wu Z, Feng Q, Chang W, Ji M, Liu C, et al: Tumor-infiltrated activated B cells suppress liver metastasis of colorectal cancers. Cell Rep. 40:1112952022. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Jia J, Wang F, Fang Y, Yang Y, Zhou Q, Yuan W, Gu X, Hu J and Yang S: Pre-metastatic niche: formation, characteristics and therapeutic implication. Signal Transduct Target Ther. 9:2362024. View Article : Google Scholar : PubMed/NCBI | |
Taher TE, Bystrom J, Ong VH, Isenberg DA, Renaudineau Y, Abraham DJ and Mageed RA: Intracellular B lymphocyte signalling and the regulation of humoral immunity and autoimmunity. Clin Rev Allergy Immunol. 53:237–264. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chandnani N, Gupta I, Mandal A and Sarkar K: Participation of B cell in immunotherapy of cancer. Pathol Res Pract. 255:1551692024. View Article : Google Scholar : PubMed/NCBI | |
Sautes-Fridman C, Petitprez F, Calderaro J and Fridman WH: Tertiary lymphoid structures in the era of cancer immunotherapy. Nat Rev Cancer. 19:307–325. 2019. View Article : Google Scholar : PubMed/NCBI | |
Fridman WH, Meylan M, Petitprez F, Sun CM, Italiano A and Sautes-Fridman C: B cells and tertiary lymphoid structures as determinants of tumour immune contexture and clinical outcome. Nat Rev Clin Oncol. 19:441–457. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Liu G, Zeng Q, Wu W, Lei K, Zhang C, Tang M, Zhang Y, Xiang X, Tan L, et al: CCL19-producing fibroblasts promote tertiary lymphoid structure formation enhancing anti-tumor IgG response in colorectal cancer liver metastasis. Cancer Cell. 42:1370–1385.e9. 2024. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Lu Z, Lin S, Xia J, Zhong Z, Xie Z, Xing Y, Qie J, Jiao M, Li Y, et al: Leucine-tRNA-synthase-2-expressing B cells contribute to colorectal cancer immunoevasion. Immunity. 55:1067–1081.e8. 2022. View Article : Google Scholar : PubMed/NCBI | |
de Ridder J, de Wilt JH, Simmer F, Overbeek L, Lemmens V and Nagtegaal I: Incidence and origin of histologically confirmed liver metastases: An explorative case-study of 23,154 patients. Oncotarget. 7:55368–55376. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sala RJ, Ery J, Cuesta-Peredo D, Muedra V and Rodilla V: Complete blood count alterations prior to the diagnosis of colorectal cancer may help in the detection of synchronous liver metastases. J Clin Med. 12:65402023. View Article : Google Scholar : PubMed/NCBI | |
Zhao D, Wang L, Chen Z, Zhang L and Xu L: KRAS is a prognostic biomarker associated with diagnosis and treatment in multiple cancers. Front Genet. 13:10249202022. View Article : Google Scholar : PubMed/NCBI | |
Johnson D, Chee CE, Wong W, Lam RCT, Tan IBH and Ma BBY: Current advances in targeted therapy for metastatic colorectal cancer-Clinical translation and future directions. Cancer Treat Rev. 125:1027002024. View Article : Google Scholar | |
Sinicrope FA, Shi Q, Allegra CJ, Smyrk TC, Thibodeau SN, Goldberg RM, Meyers JP, Pogue-Geile KL, Yothers G, Sargent DJ and Alberts SR: Association of DNA mismatch repair and mutations in BRAF and KRAS with survival after recurrence in Stage III colon cancers: A secondary analysis of 2 randomized clinical trials. JAMA Oncol. 3:472–480. 2017. View Article : Google Scholar : | |
Kuipers EJ and Grobbee EJ: Personalised screening for colorectal cancer, ready for take-off. Gut. 69:403–404. 2020. View Article : Google Scholar | |
Bipat S, van Leeuwen MS, Ijzermans JN, Comans EF, Planting AS, Bossuyt PM, Greve JW and Stoker J: Evidence-base guideline on management of colorectal liver metastases in the Netherlands. Neth J Med. 65:5–14. 2007.PubMed/NCBI | |
Bonney GK, Chew CA, Lodge P, Hubbard J, Halazun KJ, Trunecka P, Muiesan P, Mirza DF, Isaac J, Laing RW, et al: Liver transplantation for non-resectable colorectal liver metastases: The International Hepato-Pancreato-Biliary Association consensus guidelines. Lancet Gastroenterol Hepatol. 6:933–946. 2021. View Article : Google Scholar : PubMed/NCBI | |
Locker GY, Hamilton S, Harris J, Jessup JM, Kemeny N, Macdonald JS, Somerfield MR, Hayes DF and Bast RC Jr; ASCO: ASCO 2006 update of recommendations for the use of tumor markers in gastrointestinal cancer. J Clin Oncol. 24:5313–5327. 2006. View Article : Google Scholar : PubMed/NCBI | |
Desch CE, Benson AB III, Somerfield MR, Flynn PJ, Krause C, Loprinzi CL, Minsky BD, Pfister DG, Virgo KS and Petrelli NJ; American Society of Clinical Oncology: Colorectal cancer surveillance: 2005 update of an American Society of Clinical Oncology practice guideline. J Clin Oncol. 23:8512–8519. 2005. View Article : Google Scholar : PubMed/NCBI | |
Chinese College of Surgeons; Section of Gastrointestinal Surgery, Branch of Surgery, Chinese Medical Association; Section of Colorectal Surgery, Branch of Surgery, Chinese Medical Association; Colorectal Cancer Professional Committee, Chinese Anti-Cancer Association; Colorectal Cancer Professional Committee, Chinese Medical Doctor Association; Colorectal Cancer Expert Committee, Chinese Society of Clinical Oncology; Chinese Society of Colon & Rectal Surgeons, Chinese College of Surgeons, Chinese Medical Doctor Association; Metastasis Research Committee, Anorectal Branch of Chinese Medical Doctor Association; Section of Colorectal Oncology, Oncology Branch, Chinese Medical Association; Branch of Metastatic Tumor Therapy, China International Exchange and Promotive Association for Medical and Health Care; Branch of Colorectal Disease, China International Exchange and Promotive Association for Medical and Health Care: China guideline for diagnosis and comprehensive treatment of colorectal liver metastases (version 2023). Zhonghua Wei Chang Wai Ke Za Zhi. 26:1–15. 2023.In Chinese. | |
Adam R, de Gramont A, Figueras J, Kokudo N, Kunstlinger F, Loyer E, Poston G, Rougier P, Rubbia-Brandt L, Sobrero A, et al: Managing synchronous liver metastases from colorectal cancer: A multid isciplinary international consensus. Cancer Treat Rev. 41:729–741. 2015. View Article : Google Scholar : PubMed/NCBI | |
Creasy JM, Sadot E, Koerkamp BG, Chou JF, Gonen M, Kemeny NE, Balachandran VP, Kingham TP, DeMatteo RP, Allen PJ, et al: Actual 10-year survival after hepatic resection of colorectal liver metastases: What factors preclude cure? Surgery. 163:1238–1244. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sa Cunha A, Laurent C, Rault A, Couderc P, Rullier E and Saric J: A second liver resection due to recurrent colorectal liver metastases. Arch Surg. 142:1144–1149. 2007. View Article : Google Scholar : PubMed/NCBI | |
Prior TW, Leach ME and Finanger EL: Spinal Muscular Atrophy. GeneReviews(®). Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE and Amemiya A: University of Washington; Seattle: Copyright © 1993-2025, University of Washington, Seattle. GeneReviews is a registered trademark of the University of Washington, Seattle. All rights reserved., Seattle (WA). 1993 | |
Boudjema K, Locher C, Sabbagh C, Ortega-Deballon P, Heyd B, Bachellier P, Métairie S, Paye F, Bourlier P, Adam R, et al: Simultaneous versus delayed resection for initially resectable synchronous colorectal cancer liver metastases: A prospective, open-label, randomized, controlled trial. Ann Surg. 273:49–56. 2021. View Article : Google Scholar | |
Ge Y, Lei S, Cai B, Gao X, Wang G, Wang L and Wang Z: Incidence and prognosis of pulmonary metastasis in colorectal cancer: A population-based study. Int J Colorectal Dis. 35:223–232. 2019. View Article : Google Scholar : PubMed/NCBI | |
Huo X, Zhang L and Li T: Analysis of the association of the expression of KiSS-1 in colorectal cancer tissues with the pathology and prognosis. Oncol Lett. 15:3056–3060. 2018.PubMed/NCBI | |
Jin LJ, Chen WB, Zhang XY, Bai J, Zhao HC and Wang ZY: Analysis of factors potentially predicting prognosis of colorectal cancer. World J Gastrointest Oncol. 11:1206–1217. 2019. View Article : Google Scholar | |
Ganesh K, Stadler ZK, Cercek A, Mendelsohn RB, Shia J, Segal NH and Diaz LA Jr: Immunotherapy in colorectal cancer: Rationale, challenges and potentia. Nat Rev Gastroenterol Hepatol. 16:361–375. 2019. View Article : Google Scholar : PubMed/NCBI | |
Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF, Merad M, Coussens LM, Gabrilovich DI, Ostrand-Rosenberg S, Hedrick CC, et al: Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med. 24:541–550. PubMed/NCBI | |
Yuan L, Tan Z, Huang J, Chen F, Hambly BD, Bao S and Tao K: Exploring the clinical significance of IL-38 correlation with PD-1, CTLA-4, and FOXP3 in colorectal cancer draining lymph nodes. Front Immunol. 15:13845482024. View Article : Google Scholar : PubMed/NCBI | |
Kim RD, Kovari BP, Martinez M, Xie H, Sahin IH, Mehta R, Strosberg J, Imanirad I, Ghayouri M, Kim YC, et al: A phase I/Ib study of regorafenib and nivolumab in mismatch repair proficient advanced refractory colorectal cancer. Eur J Cancer. 169:93–102. 2022. View Article : Google Scholar : PubMed/NCBI | |
Saberzadeh-Ardestani B, Jones JC, Hubbard JM, McWilliams RR, Halfdanarson TR, Shi Q, Sonbol MB, Ticku J, Jin Z and Sinicrope FA: Association between survival and metastatic site in mismatch repair–deficient metastatic colorectal cancer treated with first-line pembrolizumab. JAMA Netw Open. 6:e230400. 2023. View Article : Google Scholar | |
Chen EX, Loree JM, Titmuss E, Jonker DJ, Kennecke HF, Berry S, Couture F, Ahmad CE, Goffin JR, Kavan P, et al: Liver metastases and immune checkpoint inhibitor efficacy in patients with refractory metastatic colorectal cancer: A secondary analysis of a randomized clinical trial. JAMA Netw Open. 6:e2346094. 2023. View Article : Google Scholar : PubMed/NCBI | |
Hecht JR, Raman SS, Chan A, Kalinsky K, Baurain JF, Jimenez MM, Garcia MM, Berger MD, Lauer UM, Khattak A, et al: Phase Ib study of talimogene laherparepvec in combination with atezolizumab in patients with triple negative breast cancer and colorectal cancer with liver metastases. ESMO Open. 8:1008842023. View Article : Google Scholar : PubMed/NCBI | |
Taïeb J, Bouche O, André T, Le Malicot K, Laurent-Puig P, Bez J, Toullec C, Borg C, Randrian V, Evesque L, et al: Avelumab vs standard second-line chemotherapy in patients with metastatic colorectal cancer and microsatellite instability: A randomized clinical trial. JAMA Oncol. 9:1356–1363. 2023. View Article : Google Scholar : PubMed/NCBI | |
Wang R, Lian J, Wang X, Pang X, Xu B, Tang S, Shao J and Lu H: Survival rate of colorectal cancer in China: A systematic review and meta-analysis. Front Oncol. 13:10331542023. View Article : Google Scholar : PubMed/NCBI | |
Saberzadeh-Ardestani B, Jones JC, Hubbard JM, McWilliams RR, Halfdanarson TR, Shi Q, Sonbol MB, Ticku J, Jin Z and Sinicrope FA: Association between survival and metastatic site in mismatch Repair-deficient metastatic colorectal cancer treated with First-line pembrolizumab. JAMA Netw Open. 6:e2304002023. View Article : Google Scholar : PubMed/NCBI | |
Diaz LA, Shiu KK, Kim TW, Jensen BV, Jensen LH, Punt C, Smith D, Garcia-Carbonero R, Benavides M, Gibbs P, et al: Pembrolizumab versus chemotherapy for microsatellite instability-high or mismatch repair-deficient metastatic colorectal cancer (KEYNOTE-177): Final analysis of a randomised, open-label, phase 3 study. Lancet Oncol. 23:659–670. 2022. View Article : Google Scholar : PubMed/NCBI | |
André T, Lonardi S, Wong KYM, Lenz HJ, Gelsomino F, Aglietta M, Morse MA, Van Cutsem E, McDermott R, Hill A, et al: Nivolumab plus low-dose ipilimumab in previously treated patients with microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer: 4-year follow-up from CheckMate 142. Ann Oncol. 33:1052–1060. 2022. View Article : Google Scholar | |
Del Paggio JC: Immunotherapy: Cancer immunotherapy and the value of cure. Nat Rev Clin Oncol. 15:268–270. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kong X, Li Q, Wang D, Wang M, Yang F and Meng J: Mechanism of Qizhen decoction-mediated maturation of DC cells to activate the IL-12/JAK2/STAT4 pathway to sensitise PD-1 inhibitors in the treatment of colorectal cancer. J Ethnopharmacol. 320:1173992024. View Article : Google Scholar | |
Chen L, Jiang X, Li Y, Zhang Q, Li Q, Zhang X, Zhang M, Yu Q and Gao D: How to overcome tumor resistance to anti-PD-1/PD-L1 therapy by immunotherapy modifying the tumor microenvironment in MSS CRC. Clin Immunol. 237:1089622022. View Article : Google Scholar : PubMed/NCBI | |
Peng X, Xu Z, Guo Y and Zhu Y: Necroptosis-related genes associated with immune activity and prognosis of colorectal cancer. Front Genet. 13:9092452022. View Article : Google Scholar : PubMed/NCBI | |
Fan T, Zhang M, Yang J, Zhu Z, Cao W and Dong C: Therapeutic cancer vaccines: Advancements, challenges, and prospects. Signal Transduct Target Ther. 8:4502023. View Article : Google Scholar : PubMed/NCBI | |
Sarvizadeh M, Ghasemi F, Tavakoli F, Sadat Khatami S, Razi E, Sharifi H, Biouki NM and Taghizadeh M: Vaccines for colorectal cancer: An update. J Cell Biochem. 120:8815–8828. 2019. View Article : Google Scholar | |
Morse MA, Niedzwiecki D, Marshall JL, Garrett C, Chang DZ, Aklilu M, Crocenzi TS, Cole DJ, Dessureault S, Hobeika AC, et al: A randomized phase II study of immunization with dendritic cells modified with poxvectors encoding CEA and MUC1 compared with the same poxvectors plus GM-CSF for resected metastatic colorectal cancer. Ann Surg. 258:879–886. 2013. View Article : Google Scholar : PubMed/NCBI | |
Rodriguez J, Castañón E, Perez-Gracia JL, Rodriguez I, Viudez A, Alfaro C, Oñate C, Perez G, Rotellar F, Inogés S, et al: A randomized phase II clinical trial of dendritic cell vaccination following complete resection of colon cancer liver metastasis. J Immunother Cancer. 6:962018. View Article : Google Scholar : PubMed/NCBI | |
Busch DH, Fräßle SP, Sommermeyer D, Buchholz VR and Riddell SR: Role of memory T cell subsets for adoptive immunotherapy. Semin Immunol. 28:28–34. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chan JD, Lai J, Slaney CY, Kallies A, Beavis PA and Darcy PK: Cellular networks controlling T cell persistence in adoptive cell therapy. Nat Rev Immunol. 21:769–784. 2021. View Article : Google Scholar : PubMed/NCBI | |
Dougé A, El Ghazzi N, Lemal R and Rouzaire P: Adoptive T cell therapy in solid tumors: State-of-the Art, current challenges, and upcoming improvements. Mol Cancer Ther. 23:272–284. 2024. View Article : Google Scholar | |
Chai LF, Hardaway JC, Heatherton KR, O'Connell KP, LaPorte JP, Guha P, Lopes MC, Rabinowitz BA, Jaroch D, Cox BF, et al: Antigen receptor T cells (CAR-T) effectively control tumor growth in a colorectal liver metastasis model. J Surg Res. 272:37–50. 2022. View Article : Google Scholar | |
Zhang C, Wang Z, Yang Z, Wang M, Li S, Li Y, Zhang R, Xiong Z, Wei Z, Shen J, et al: Phase I escalating-Dose trial of CAR-T therapy targeting CEA+ metastatic colorectal cancers. Mol Ther. 25:1248–1258. 2017. View Article : Google Scholar : PubMed/NCBI | |
Xu J, Meng Q, Sun H, Zhang X, Yun J, Li B, Wu S, Li X, Yang H, Zhu H, et al: HER2-specific chimeric antigen receptor-T cells for targeted therapy of metastatic colorectal cancer. Cell Death Dis. 12:11092021. View Article : Google Scholar : PubMed/NCBI | |
Zhou X, Yang M, Yu J, Tan J, Xu N, Zhou Y, Zhang W, Ma J, Zhang Z, Friedlaender A, et al: Regional delivery of mesothelin-targeted chimeric antigen receptor T-cell effectively and safely targets colorectal cancer liver metastases in mice. J Gastrointest Oncol. 15:312–329. 2024. View Article : Google Scholar : PubMed/NCBI | |
Martínez Bedoya D, Dutoit V and Migliorini D: Allogeneic CAR T cells: An alternative to overcome challenges of CAR T cell therapy in glioblastoma. Front Immunol. 12:6400822021. View Article : Google Scholar : PubMed/NCBI | |
Pabla B, Bissonnette M and Konda VJ: Colon cancer and the epidermal growth factor receptor: Current treatment paradigms, the importance of diet, and the role of chemoprevention. World J Clin Oncol. 6:133–141. 2015. View Article : Google Scholar : PubMed/NCBI | |
Van Cutsem E, Köhne CH, Hitre E, Zaluski J, Chang Chien CR, Makhson A, D'Haens G, Pintér T, Lim R, Bodoky G, et al: Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med. 360:1408–1417. 2009. View Article : Google Scholar : PubMed/NCBI | |
Christodoulou C: Reply to the reply to the letter to the editor on 'Scalp metastases and scalp cooling for chemotherapy-induced alopecia prevention', by W. P. M. Breed (doi:10.1093/annonc/mdj085). Ann Oncol. 17:7252006. View Article : Google Scholar : PubMed/NCBI | |
Heinemann V, von Weikersthal LF, Decker T, Kiani A, Vehling-Kaiser U, Al-Batran SE, Heintges T, Lerchenmüller C, Kahl C, Seipelt G, et al: FOLFIRI plus cetuximab versus FOLFIRI plus bevacizumab as first-line treatment for patients with metastatic colorectal cancer (FIRE-3): A randomised, open-label, phase 3 trial. Lancet Oncol. 15:1065–1075. 2014. View Article : Google Scholar : PubMed/NCBI | |
Venook AP, Niedzwiecki D, Lenz HJ, Innocenti F, Fruth B, Meyerhardt JA, Schrag D, Greene C, O'Neil BH, Atkins JN, et al: Effect of First-line chemotherapy combined with cetuximab or bevacizumab on overall survival in patients with KRAS Wild-type advanced or metastatic colorectal cancer: A randomized clinical trial. JAMA. 317:2392–2401. 2017. View Article : Google Scholar : PubMed/NCBI | |
Schwartzberg LS, Rivera F, Karthaus M, Fasola G, Canon JL, Hecht JR, Yu H, Oliner KS and Go WY: PEAK: A randomized, multicenter phase II study of panitumumab plus modified fluorouracil, leucovorin, and oxaliplatin (mFOLFOX6) or bevacizumab plus mFOLFOX6 in patients with previously untreated, unresectable, wild-type KRAS exon 2 metastatic colorectal cancer. J Clin Oncol. 32:2240–2247. 2014. View Article : Google Scholar : PubMed/NCBI | |
Stintzing S, Modest DP, Rossius L, Lerch MM, von Weikersthal LF, Decker T, Kiani A, Vehling-Kaiser U, Al-Batran SE, Heintges T, et al: FOLFIRI plus cetuximab versus FOLFIRI plus bevacizumab for metastatic colorectal cancer (FIRE-3): A post-hoc analysis of tumour dynamics in the final RAS wild-type subgroup of this randomised open-label phase 3 trial. Lancet Oncol. 17:1426–1434. 2016. View Article : Google Scholar : PubMed/NCBI | |
Khattak MA, Martin H, Davidson A and Phillips M: Role of first-line anti-epidermal growth factor receptor therapy compared with anti-vascular endothelial growth factor therapy in advanced colorectal cancer: A meta-analysis of randomized clinical trials. Clin Colorectal Cancer. 14:81–90. 2015. View Article : Google Scholar : PubMed/NCBI | |
Creasy JM, Sadot E, Koerkamp BG, Chou JF, Gonen M, Kemeny NE, Saltz LB, Balachandran VP, Peter Kingham T, DeMatteo RP, et al: The impact of primary tumor location on Long-term survival in patients undergoing hepatic resection for metastatic colon cancer. Ann Surg Oncol. 25:431–438. 2018. View Article : Google Scholar | |
Arnold D, Lueza B, Douillard JY, Peeters M, Lenz HJ, Venook A, Heinemann V, Van Cutsem E, Pignon JP, Tabernero J, et al: Prognostic and predictive value of primary tumour side in patients with RAS wild-type metastatic colorectal cancer treated with chemotherapy and EGFR directed antibodies in six randomized trials. Ann Oncol. 28:1713–1729. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tejpar S, Stintzing S, Ciardiello F, Tabernero J, Van Cutsem E, Beier F, Esser R, Lenz HJ and Heinemann V: Prognostic and predictive relevance of primary tumor location in patients with RAS Wild-type metastatic colorectal cancer: Retrospective analyses of the CRYSTAL and FIRE-3 trials. JAMA Oncol. 3:194–201. 2017. View Article : Google Scholar | |
Boeckx N, Koukakis R, Op de Beeck K, Rolfo C, Van Camp G, Siena S, Tabernero J, Douillard JY, André T and Peeters M: Primary tumor sidedness has an impact on prognosis and treatment outcome in metastatic colorectal cancer: Results from two randomized first-line panitumumab studies. Ann Oncol. 28:1862–1868. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hecht JR, Cohn A, Dakhil S, Saleh M, Piperdi B, Cline-Burkhardt M, Tian Y and Go WY: SPIRITT: A randomized, multicenter, Phase II study of panitumumab with FOLFIRI and bevacizumab with FOLFIRI as Second-line treatment in patients with unresectable wild type KRAS metastatic colorectal cancer. Clin Colorectal Cancer. 14:72–80. 2015. View Article : Google Scholar : PubMed/NCBI | |
Folprecht G, Gruenberger T, Bechstein W, Raab HR, Weitz J, Lordick F, Hartmann JT, Stoehlmacher-Williams J, Lang H, Trarbach T, et al: Survival of patients with initially unresectable colorectal liver metastases treated with FOLFOX/cetuximab or FOLFIRI/cetuximab in a multidisciplinary concept (CELIM study). Ann Oncol. 25:1018–1025. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ye LC, Liu TS, Ren L, Wei Y, Zhu DX, Zai SY, Ye QH, Yu Y, Xu B, Qin XY and Xu J: Randomized controlled trial of cetuximab plus chemotherapy for patients with KRAS wild-type unresectable colorectal liver-limited metastases. J Clin Oncol. 31:1931–1938. 2013. View Article : Google Scholar : PubMed/NCBI | |
Carrato A, Abad A, Massuti B, Grávalos C, Escudero P, Longo-Muñoz F, Manzano JL, Gómez A, Safont MJ, Gallego J, et al: First-line panitumumab plus FOLFOX4 or FOLFIRI in colorectal cancer with multiple or unresectable liver metastases: A randomised, phase II trial (PLANET-TTD). Eur J Cancer. 81:191–202. 2017. View Article : Google Scholar : PubMed/NCBI | |
Primrose J, Falk S, Finch-Jones M, Valle J, O'Reilly D, Siriwardena A, Hornbuckle J, Peterson M, Rees M, Iveson T, et al: Systemic chemotherapy with or without cetuximab in patients with resectable colorectal liver metastasis: The New EPOC randomised controlled trial. Lancet Oncol. 15:601–611. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bisschop C, van Dijk TH, Beukema JC, Jansen RLH, Gelderblom H, de Jong KP, Rutten HJT, van de Velde CJH, Wiggers T, Havenga K and Hospers GAP: Short-Course radiotherapy followed by neoadjuvant bevacizumab, capecitabine, and oxaliplatin and subsequent radical treatment in primary Stage IV rectal cancer: Long-term results of a phase II study. Ann Surg Oncol. 24:2632–2638. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chen HH, Lin JK, Chen JB, Chuang CH, Liu MC, Wang JY and Changchien CR: Neoadjuvant therapy of bevacizumab in combination with oxaliplatin and capecitabine (XELOX) for patients with metastatic colorectal cancer with unresectable liver metastases: A phase II, open-label, single-arm, noncomparative trial. Asia Pac J Clin Oncol. 14:61–68. 2018. View Article : Google Scholar | |
Pietrantonio F, Cotsoglou C, Fuca G, Lo Vullo S, Nichetti F, Milione M, Coppa J, Vaiani M, Alessi A, Prisciandaro M, et al: Perioperative Bevacizumab-based triplet chemotherapy in patients with potentially resectable colorectal cancer liver metastases. Clin Colorectal Cancer. 18:34–43.e6. 2019. View Article : Google Scholar | |
Yasuno M, Uetake H, Ishiguro M, Mizunuma N, Komori T, Miyata G, Shiomi A, Kagimura T and Sugihara K: mFOLFOX6 plus bevacizumab to treat liver-only metastases of colorectal cancer that are unsuitable for upfront resection (TRICC0808): A multicenter phase II trial comprising the final analysis for survival. Int J Clin Oncol. 24:516–525. 2019. View Article : Google Scholar : PubMed/NCBI | |
Takii Y, Maruyama S and Nogami H: Can the prognosis of colorectal cancer be improved by surgery? World J Gastrointest Surg. 8:574–577. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhou F and Ding J: Prognosis and factors affecting colorectal cancer with ovarian metastasis. Updates Surg. 73:391–398. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ramdhani K, Smits MLJ, Lam MGEH and Braat AJAT: Combining selective internal radiation therapy with immunotherapy in treating hepatocellular carcinoma and hepatic colorectal metastases: A systematic review. Cancer Biother Radiopharm. 38:216–224. 2023.PubMed/NCBI | |
Van Cutsem E, Cervantes A, Adam R, Sobrero A, Van Krieken JH, Aderka D, Aranda Aguilar E, Bardelli A, Benson A, Bodoky G, et al: ESMO consensus guidelines for the management of patients with metastatic colorectal cancer. Ann Oncol. 27:1386–1422. PubMed/NCBI | |
Azeredo-da-Silva ALF, de Jesus VHF, Agirrezabal I, Brennan VK, Carion PL, Amoury N, Vetromilla BM, Zanotto BS, Shergill S and Ziegelmann PK: Selective internal radiation therapy using Y-90 resin microspheres for metastatic colorectal cancer: An updated systematic review and network Meta-analysis. Adv Ther. 41:1606–1620. 2024. View Article : Google Scholar : PubMed/NCBI | |
Zhu Y, Yu J, Zhang K, Feng Y, Guo K, Sun L and Ruan S: Network pharmacology analysis to explore the pharmacological mechanism of effective Chinese medicines in treating metastatic colorectal cancer using Meta-analysis approach. Am J Chin Med. 49:1839–1870. PubMed/NCBI | |
Lam W, Bussom S, Guan F, Jiang Z, Zhang W, Gullen EA, Liu SH and Cheng YC: The four-herb Chinese medicine PHY906 reduces chemotherapy-induced gastrointestinal toxicity. Sci Transl Med. 2:45ra592010. View Article : Google Scholar : PubMed/NCBI | |
Sun Q, He M, Zhang M, Zeng S, Chen L, Zhao H, Yang H, Liu M, Ren S and Xu H: Traditional Chinese medicine and colorectal cancer: Implications for drug discovery. Front Pharmacol. 12:6850022021. View Article : Google Scholar : PubMed/NCBI | |
Liu N, Wu C, Jia R, Cai G, Wang Y, Zhou L, Ji Q, Sui H, Zeng P, Xiao H, et al: Traditional Chinese medicine combined with chemotherapy and cetuximab or bevacizumab for metastatic colorectal cancer: A randomized, double-blind, Placebo-controlled clinical trial. Front Pharmacol. 11:4782020. View Article : Google Scholar : PubMed/NCBI | |
Zhang T, He WT, Zi MJ, Song G, Yi DH and Yang YF: Cohort study on prognosis of patients with metastatic colorectal cancer treated with integrated Chinese and Western medicine. Chin J Integr Med. 24:573–578. 2018. View Article : Google Scholar : PubMed/NCBI | |
Tang M, Zhang W, Qin W, Zou C, Yan Y, He B, Xu Y, Zhang Y, Liu J, Sun H and Yang Y: Association between Oral Chinese herbal medicine and recurrence and metastasis in patients with stages II and III colorectal cancer: A cohort study in China. Evid Based Complement Alternat Med. 2022:85293952022. View Article : Google Scholar : PubMed/NCBI | |
Hsiao WL and Liu L: The role of traditional Chinese herbal medicines in cancer therapy-from TCM theory to mechanistic insights. Planta Med. 76:1118–1131. 2010. View Article : Google Scholar : PubMed/NCBI | |
Rodrigues JA and Correia JH: Photodynamic therapy for colorectal cancer: An update and a look to the future. Int J Mol Sci. 24:122042023. View Article : Google Scholar : PubMed/NCBI | |
van Duijnhoven FH, Rovers JP, Engelmann K, Krajina Z, Purkiss SF, Zoetmulder FA, Vogl TJ and Terpstra OT: Photodynamic therapy with 5,10,15, 20 -Tetrak is (m-Hydroxyphenyl) bacteriochlorin for colorectal liver metastases is safe and feasible: Results from a phase I study. Ann Surg Oncol. 12:808–816. 2005. View Article : Google Scholar : PubMed/NCBI | |
Gu B, Wang B, Li X, Feng Z, Ma C, Gao L, Yu Y, Zhang J, Zheng P, Wang Y, et al: Photodynamic therapy improves the clinical efficacy of advanced colorectal cancer and recruits immune cells into the tumor immune microenvironment. Front Immunol. 13:10504212022. View Article : Google Scholar : PubMed/NCBI | |
Hao Y, Gu Z, Yu Z, Schomann T, Sayedipour S, Aguilar JC, Ten Dijke P and Cruz LJ: Photodynamic therapy in combination with the hepatitis B core virus-like particles (HBc VLPs) to prime anticancer immunity for colorectal cancer treatment. Cancers (Basel). 14:27242022. View Article : Google Scholar : PubMed/NCBI | |
Liang X, Chen M, Bhattarai P, Hameed S and Dai Z: Perfluorocarbon@Porphyrin nanoparticles for tumor hypoxia relief to enhance photodynamic therapy against liver metastasis of colon cancer. ACS Nano. 14:13569–13583. 2020. View Article : Google Scholar : PubMed/NCBI |