
Epigenetic and epitranscriptomic role of lncRNA in carcinogenesis (Review)
- Authors:
- Chunfei Dai
- Haoyue Qianjiang
- Ruishuang Fu
- Huimin Yang
- Aiqin Shi
- Huacheng Luo
-
Affiliations: Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine, The Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China, Xianghu Laboratory, Hangzhou, Zhejiang 311231, P.R. China - Published online on: February 26, 2025 https://doi.org/10.3892/ijo.2025.5735
- Article Number: 29
-
Copyright: © Dai et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
![]() |
![]() |
Ransohoff JD, Wei Y and Khavari PA: The functions and unique features of long intergenic non-coding RNA. Nat Rev Mol Cell Biol. 19:143–157. 2018. View Article : Google Scholar : | |
Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, Tanzer A, Lagarde J, Lin W, Schlesinger F, et al: Landscape of transcription in human cells. Nature. 489:101–108. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wang D, Garcia-Bassets I, Benner C, Li W, Su X, Zhou Y, Qiu J, Liu W, Kaikkonen MU, Ohgi KA, et al: Reprogramming transcription by distinct classes of enhancers functionally defined by eRNA. Nature. 474:390–394. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, Sun W, Qin Z, Guo S, Kang Y, Zeng S and Yu L: LncRNA regulation: New frontiers in epigenetic solutions to drug chemoresistance. Biochem Pharmacol. 189:1142282021. View Article : Google Scholar | |
Morlando M and Fatica A: Alteration of epigenetic regulation by long noncoding RNAs in cancer. Int J Mol Sci. 19:5702018. View Article : Google Scholar : PubMed/NCBI | |
Khorkova O, Hsiao J and Wahlestedt C: Basic biology and therapeutic implications of lncRNA. Adv Drug Deliv Rev. 87:15–24. 2015. View Article : Google Scholar : PubMed/NCBI | |
Beckedorff FC, Amaral MS, Deocesano-Pereira C and Verjovski-Almeida S: Long non-coding RNAs and their implications in cancer epigenetics. Biosci Rep. 33:e000612013. View Article : Google Scholar : PubMed/NCBI | |
Lu Y, Chan YT, Tan HY, Li S, Wang N and Feng Y: Epigenetic regulation in human cancer: The potential role of epi-drug in cancer therapy. Mol Cancer. 19:792020. View Article : Google Scholar : PubMed/NCBI | |
Tachiwana H, Yamamoto T and Saitoh N: Gene regulation by non-coding RNAs in the 3D genome architecture. Curr Opin Genet Dev. 61:69–74. 2020. View Article : Google Scholar : PubMed/NCBI | |
Phillips JE and Corces VG: CTCF: Master weaver of the genome. Cell. 137:1194–1211. 2009. View Article : Google Scholar : PubMed/NCBI | |
Fang C, Rao S, Crispino JD and Ntziachristos P: Determinants and role of chromatin organization in acute leukemia. Leukemia. 34:2561–2575. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hansen AS, Hsieh TS, Cattoglio C, Pustova I, Saldaña-Meyer R, Reinberg D, Darzacq X and Tjian R: Distinct classes of chromatin loops revealed by deletion of an RNA-binding region in CTCF. Mol Cell. 76:395–411.e13. 2019. View Article : Google Scholar : PubMed/NCBI | |
Saldana-Meyer R, Rodriguez-Hernaez J, Escobar T, Nishana M, Jácome-López K, Nora EP, Bruneau BG, Tsirigos A, Furlan-Magaril M, Skok J and Reinberg D: RNA interactions are essential for CTCF-mediated genome organization. Mol Cell. 76:412–422. 2019. View Article : Google Scholar : PubMed/NCBI | |
Cui L, Ma R, Cai J, Guo C, Chen Z, Yao L, Wang Y, Fan R, Wang X and Shi Y: RNA modifications: Importance in immune cell biology and related diseases. Signal Transduct Target Ther. 7:3342022. View Article : Google Scholar : PubMed/NCBI | |
Dinescu S, Ignat S, Lazar AD, Constantin C, Neagu M and Costache M: Epitranscriptomic signatures in lncRNAs and their possible roles in cancer. Genes (Basel). 10:522019. View Article : Google Scholar : PubMed/NCBI | |
Yang Z, Xu F, Teschendorff AE, Zhao Y, Yao L, Li J and He Y: Insights into the role of long non-coding RNAs in DNA methylation mediated transcriptional regulation. Front Mol Biosci. 9:10674062022. View Article : Google Scholar : PubMed/NCBI | |
Statello L, Guo CJ, Chen LL and Huarte M: Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol. 22:96–118. 2021. View Article : Google Scholar | |
Luo H, Zhu G, Xu J, Lai Q, Yan B, Guo Y, Fung TK, Zeisig BB, Cui Y, Zha J, et al: HOTTIP lncRNA promotes hematopoietic stem cell Self-renewal leading to AML-like disease in mice. Cancer Cell. 36:645–659.e8. 2019. View Article : Google Scholar : PubMed/NCBI | |
Greenberg MVC and Bourc'his D: The diverse roles of DNA methylation in mammalian development and disease. Nat Rev Mol Cell Biol. 20:590–607. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhao SG, Chen WS, Li H, Foye A, Zhang M, Sjöström M, Aggarwal R, Playdle D, Liao A, Alumkal JJ, et al: The DNA methylation landscape of advanced prostate cancer. Nat Genet. 52:778–789. 2020. View Article : Google Scholar : PubMed/NCBI | |
Robertson KD: DNA methylation, methyltransferases, and cancer. Oncogene. 20:3139–3155. 2001. View Article : Google Scholar : PubMed/NCBI | |
van der Velden PA, Metzelaar-Blok JA, Bergman W, Monique H, Hurks H, Frants RR, Gruis NA and Jager MJ: Promoter hypermethylation: A common cause of reduced p16(INK4a) expression in uveal melanoma. Cancer Res. 61:5303–5306. 2001.PubMed/NCBI | |
Saif I, Bouziyane A, Benhessou M, Karroumi ME and Ennaji MM: Detection of hypermethylation BRCA1/2 gene promoter in breast tumours among Moroccan women. Mol Biol Rep. 48:7147–7152. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Yang B, Zhang M, Guo W, Wu Z, Wang Y, Jia L, Li S; Cancer Genome Atlas Research Network; Xie W and Yang D: lncRNA epigenetic landscape analysis identifies EPIC1 as an oncogenic lncRNA that interacts with MYC and promotes Cell-cycle progression in cancer. Cancer Cell. 33:706–720.e9. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lyko F: The DNA methyltransferase family: A versatile toolkit for epigenetic regulation. Nat Rev Genet. 19:81–92. 2018. View Article : Google Scholar | |
Liu D, Wu K, Yang Y, Zhu D, Zhang C and Zhao S: Long noncoding RNA ADAMTS9-AS2 suppresses the progression of esophageal cancer by mediating CDH3 promoter methylation. Mol Carcinog. 59:32–44. 2020. View Article : Google Scholar | |
Zhang S, Zheng F, Zhang L, Huang Z, Huang X, Pan Z, Chen S, Xu C, Jiang Y, Gu S, et al: LncRNA HOTAIR-mediated MTHFR methylation inhibits 5-fluorouracil sensitivity in esophageal cancer cells. J Exp Clin Cancer Res. 39:1312020. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Bu P, Ai Y, Srinivasan T, Chen HJ, Xiang K, Lipkin SM and Shen X: A long non-coding RNA targets microRNA miR-34a to regulate colon cancer stem cell asymmetric division. Elife. 5:e146202016. View Article : Google Scholar : PubMed/NCBI | |
Lai IL, Chang YS, Chan WL Lee YT, Yen JC, Yang CA, Hung SY and Chang JG: Male-specific long noncoding RNA TTTY15 inhibits Non-small cell lung cancer proliferation and metastasis via TBX4. Int J Mol Sci. 20:34732019. View Article : Google Scholar : PubMed/NCBI | |
Li Q, Su Z, Xu X, Liu G, Song X, Wang R, Sui X, Liu T, Chang X, Huang D, et al: AS1DHRS4, a head-to-head natural antisense transcript, silences the DHRS4 gene cluster in cis and trans. Proc Natl Acad Sci USA. 109:14110–14115. 2012. View Article : Google Scholar : PubMed/NCBI | |
Su SC, Yeh CM, Lin CW, Hsieh YH, Chuang CY, Tang CH, Lee YC and Yang SF: A novel melatonin-regulated lncRNA suppresses TPA-induced oral cancer cell motility through replenishing PRUNE2 expression. J Pineal Res. 71:e127602021. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Luo Q, Li Z, Wang Y, Zhu C, Li T and Li X: Long Non-coding RNA IRAIN inhibits VEGFA expression via enhancing Its DNA methylation leading to tumor suppression in renal carcinoma. Front Oncol. 10:10822020. View Article : Google Scholar : PubMed/NCBI | |
Guo X, Chen Z, Zhao L, Cheng D, Song W and Zhang X: Long non-coding RNA-HAGLR suppressed tumor growth of lung adenocarcinoma through epigenetically silencing E2F1. Exp Cell Res. 382:1114612019. View Article : Google Scholar : PubMed/NCBI | |
Yoon JH, You BH, Park CH, Kim YJ, Nam JW and Lee SK: The long noncoding RNA LUCAT1 promotes tumorigenesis by controlling ubiquitination and stability of DNA methyltransferase 1 in esophageal squamous cell carcinoma. Cancer Lett. 417:47–57. 2018. View Article : Google Scholar | |
Jones R, Wijesinghe S, Wilson C, Halsall J, Liloglou T and Kanhere A: A long intergenic non-coding RNA regulates nuclear localization of DNA methyl transferase-1. iScience. 24:1022732021. View Article : Google Scholar : PubMed/NCBI | |
Xu X, Lou Y, Tang J, Teng Y, Zhang Z, Yin Y, Zhuo H and Tan Z: The long non-coding RNA Linc-GALH promotes hepatocellular carcinoma metastasis via epigenetically regulating Gankyrin. Cell Death Dis. 10:862019. View Article : Google Scholar : PubMed/NCBI | |
Vennin C, Spruyt N, Robin YM, Chassat T, Le Bourhis X and Adriaenssens E: The long non-coding RNA 91H increases aggressive phenotype of breast cancer cells and up-regulates H19/IGF2 expression through epigenetic modifications. Cancer Lett. 385:198–206. 2017. View Article : Google Scholar | |
Jin L, Cai Q, Wang S, Wang S, Wang J and Quan Z: Long noncoding RNA PVT1 promoted gallbladder cancer proliferation by epigenetically suppressing miR-18b-5p via DNA methylation. Cell Death Dis. 11:8712020. View Article : Google Scholar : PubMed/NCBI | |
Wu X and Zhang Y: TET-mediated active DNA demethylation: Mechanism, function and beyond. Nat Rev Genet. 18:517–534. 2017. View Article : Google Scholar : PubMed/NCBI | |
Rasmussen KD and Helin K: Role of TET enzymes in DNA methylation, development, and cancer. Genes Dev. 30:733–750. 2016. View Article : Google Scholar : PubMed/NCBI | |
Al-Imam MJ, Hussein UA, Sead FF, Faqri AMA, Mekkey SM, Khazel AJ and Almashhadani HA: The interactions between DNA methylation machinery and long non-coding RNAs in tumor progression and drug resistance. DNA Repair (Amst). 128:1035262023. View Article : Google Scholar : PubMed/NCBI | |
Zhou L, Ren M, Zeng T, Wang W, Wang X, Hu M, Su S, Sun K, Wang C, Liu J, et al: TET2-interacting long noncoding RNA promotes active DNA demethylation of the MMP-9 promoter in diabetic wound healing. Cell Death Dis. 10:8132019. View Article : Google Scholar : PubMed/NCBI | |
Roessner A, Franke S, Schreier J, Ullmann S, Karras F and Jechorek D: Genetics and epigenetics in conventional chondrosarcoma with focus on non-coding RNAs. Pathol Res Pract. 239:1541722022. View Article : Google Scholar : PubMed/NCBI | |
Zhu X, Du J, Yu J, Guo R, Feng Y, Qiao L, Xu Z, Yang F, Zhong G, Liu F, et al: LncRNA NKILA regulates endothelium inflammation by controlling a NF-κB/KLF4 positive feedback loop. J Mol Cell Cardiol. 126:60–69. 2019. View Article : Google Scholar | |
Liu B, Sun L, Liu Q, Gong C, Yao Y, Lv X, Lin L, Yao H, Su F, Li D, et al: A cytoplasmic NF-kappaB interacting long noncoding RNA blocks IkappaB phosphorylation and suppresses breast cancer metastasis. Cancer Cell. 27:370–381. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Fan X, Zhu J, Chen X, Liu Y and Zhou H: LncRNA MAGI2-AS3 inhibits the self-renewal of leukaemic stem cells by promoting TET2-dependent DNA demethylation of the LRIG1 promoter in acute myeloid leukaemia. RNA Biol. 17:784–793. 2020. View Article : Google Scholar : PubMed/NCBI | |
Nie Y, Zhou L, Wang H, Chen N, Jia L, Wang C, Wang Y, Chen J, Wen X, Niu C, et al: Profiling the epigenetic interplay of lncRNA RUNXOR and oncogenic RUNX1 in breast cancer cells by gene in situ cis-activation. Am J Cancer Res. 9:1635–1649. 2019.PubMed/NCBI | |
Elsheikh SE, Green AR, Rakha EA, Powe DG, Ahmed RA, Collins HM, Soria D, Garibaldi JM, Paish CE, Ammar AA, et al: Global histone modifications in breast cancer correlate with tumor phenotypes, prognostic factors, and patient outcome. Cancer Res. 69:3802–3809. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wang KC, Yang YW, Liu B, Sanyal A, Corces-Zimmerman R, Chen Y, Lajoie BR, Protacio A, Flynn RA, Gupta RA, et al: A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature. 472:120–124. 2011. View Article : Google Scholar : PubMed/NCBI | |
Deng C, Li Y, Zhou L, Cho J, Patel B, Terada N, Li Y, Bungert J, Qiu Y, Huang S, et al: HoxBlinc RNA recruits Set1/MLL complexes to activate hox gene expression patterns and mesoderm lineage development. Cell Rep. 14:103–114. 2016. View Article : Google Scholar : PubMed/NCBI | |
Nagano T, Mitchell JA, Sanz LA, Pauler FM, Ferguson-Smith AC, Feil R and Fraser P: The Air noncoding RNA epigenetically silences transcription by targeting G9a to chromatin. Science. 322:1717–1720. 2008. View Article : Google Scholar : PubMed/NCBI | |
Xiu B, Chi Y, Liu L, Chi W, Zhang Q, Chen J, Guo R, Si J, Li L, Xue J, et al: LINC02273 drives breast cancer metastasis by epigenetically increasing AGR2 transcription. Mol Cancer. 18:1872019. View Article : Google Scholar : PubMed/NCBI | |
Hu A, Hong F, Li D, Jin Y, Kon L, Xu Z, He H and Xie Q: Long non-coding RNA ROR recruits histone transmethylase MLL1 to up-regulate TIMP3 expression and promote breast cancer progression. J Transl Med. 19:952021. View Article : Google Scholar : PubMed/NCBI | |
Lai IL, Yang CA, Lin PC, Chan WL, Lee YT, Yen JC, Chang YS and Chang JG: Long noncoding RNA MIAT promotes non-small cell lung cancer proliferation and metastasis through MMP9 activation. Oncotarget. 8:98148–98162. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang WT, Chen TQ, Zeng ZC, Pan Q, Huang W, Han C, Fang K, Sun LY, Yang QQ, Wang D, et al: The lncRNA LAMP5-AS1 drives leukemia cell stemness by directly modulating DOT1L methyltransferase activity in MLL leukemia. J Hematol Oncol. 13:782020. View Article : Google Scholar : PubMed/NCBI | |
Chu W, Zhang X, Qi L, Fu Y, Wang P, Zhao W, Du J, Zhang J, Zhan J, Wang Y, et al: The EZH2-PHACTR2-AS1-Ribosome axis induces genomic instability and promotes growth and metastasis in breast cancer. Cancer Res. 80:2737–2750. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wanowska E, Samorowska K and Szczesniak MW: Emerging roles of long Noncoding RNAs in breast cancer epigenetics and epitranscriptomics. Front Cell Dev Biol. 10:9223512022. View Article : Google Scholar : PubMed/NCBI | |
Pandey RR, Mondal T, Mohammad F, Enroth S, Redrup L, Komorowski J, Nagano T, Mancini-Dinardo D and Kanduri C: Antisense Noncoding RNA mediates lineage-specific transcriptional silencing through Chromatin-Level regulation. Mol Cell. 32:232–246. 2008. View Article : Google Scholar : PubMed/NCBI | |
Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, Tsai MC, Hung T, Argani P, Rinn JL, et al: Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature. 464:1071–1076. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kim K, Jutooru I, Chadalapaka G, Johnson G, Frank J, Burghardt R, Kim S and Safe S: HOTAIR is a negative prognostic factor and exhibits pro-oncogenic activity in pancreatic cancer. Oncogene. 32:1616–1625. 2013. View Article : Google Scholar | |
Niinuma T, Suzuki H, Nojima M, Nosho K, Yamamoto H, Takamaru H, Yamamoto E, Maruyama R, Nobuoka T, Miyazaki Y, et al: Upregulation of miR-196a and HOTAIR drive malignant character in gastrointestinal stromal tumors. Cancer Res. 72:1126–1136. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kondo Y, Shinjo K and Katsushima K: Long non-coding RNAs as an epigenetic regulator in human cancers. Cancer Sci. 108:1927–1933. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tsai MC, Manor O, Wan Y, Mosammaparast N, Wang JK, Lan F, Shi Y, Segal E and Chang HY: Long Noncoding RNA as modular scaffold of histone modification complexes. Science. 329:689–693. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kumar S, Gonzalez EA, Rameshwar P and Etchegaray JP: Non-Coding RNAs as mediators of epigenetic changes in malignancies. Cancers (Basel). 12:36572020. View Article : Google Scholar : PubMed/NCBI | |
Liu Z, Sun M, Lu K, Liu J, Zhang M, Wu W, De W, Wang Z and Wang R: The long noncoding RNA HOTAIR contributes to cisplatin resistance of human lung adenocarcinoma cells via downregualtion of p21(WAF1/CIP1) expression. PLoS One. 8:e772932013. View Article : Google Scholar : PubMed/NCBI | |
Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA, Goodnough LH, Helms JA, Farnham PJ, Segal E and Chang HY: Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell. 129:1311–1323. 2007. View Article : Google Scholar : PubMed/NCBI | |
Liu YW, Xia R, Lu K, Xie M, Yang F, Sun M, De W, Wang C and Ji G: LincRNAFEZF1-AS1 represses p21 expression to promote gastric cancer proliferation through LSD1-Mediated H3K4me2 demethylation. Mol Cancer. 16:392017. View Article : Google Scholar : PubMed/NCBI | |
Pang B, Wang Q, Ning S, Wu J, Zhang X, Chen Y and Xu S: Landscape of tumor suppressor long noncoding RNAs in breast cancer. J Exp Clin Cancer Res. 38:792019. View Article : Google Scholar : PubMed/NCBI | |
Huo Y, Li Q, Wang X, Jiao X, Zheng J, Li Z and Pan X: MALAT1 predicts poor survival in osteosarcoma patients and promotes cell metastasis through associating with EZH2. Oncotarget. 8:46993–47006. 2017. View Article : Google Scholar : PubMed/NCBI | |
Amodio N, Raimondi L, Juli G, Stamato MA, Caracciolo D, Tagliaferri P and Tassone P: MALAT1: A druggable long non-coding RNA for targeted anti-cancer approaches. J Hematol Oncol. 11:632018. View Article : Google Scholar : PubMed/NCBI | |
Chi JS, Li JZ, Jia JJ, Zhang T, Liu XM and Yi L: Long non-coding RNA ANRIL in gene regulation and its duality in atherosclerosis. J Huazhong Univ Sci Technolog Med Sci. 37:816–822. 2017.PubMed/NCBI | |
Meseure D, Vacher S, Alsibai KD, Nicolas A, Chemlali W, Caly M, Lidereau R, Pasmant E, Callens C and Bieche I: Expression of ANRIL-Polycomb Complexes-CDKN2A/B/ARF genes in breast tumors: Identification of a Two-Gene (EZH2/CBX7) signature with independent prognostic value. Mol Cancer Res. 14:623–633. 2016. View Article : Google Scholar : PubMed/NCBI | |
Puvvula PK, Desetty RD, Pineau P, Marchio A, Moon A, Dejean A and Bischof O: Long noncoding RNA PANDA and scaffold-attachment-factor SAFA control senescence entry and exit. Nat Commun. 5:53232014. View Article : Google Scholar : PubMed/NCBI | |
Portoso M, Ragazzini R, Brenčič Ž, Moiani A, Michaud A, Vassilev I, Wassef M, Servant N, Sargueil B and Margueron R: PRC2 is dispensable for HOTAIR-mediated transcriptional repression. EMBO J. 36:981–994. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Arai S, Song X, Reichart D, Du K, Pascual G, Tempst P, Rosenfeld MG, Glass CK and Kurokawa R: Induced ncRNAs allosterically modify RNA-binding proteins in cis to inhibit transcription. Nature. 454:126–130. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wang XH and Li J: CircAGFG1 aggravates the progression of cervical cancer by downregulating p53. Eur Rev Med Pharmacol Sci. 24:1704–1711. 2020.PubMed/NCBI | |
Zhang G, Chen X, Ma L, Ding R, Zhao L, Ma F and Deng X: LINC01419 facilitates hepatocellular carcinoma growth and metastasis through targeting EZH2-regulated RECK. Aging (Albany NY). 12:11071–11084. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chen XJ and An N: Long noncoding RNA ATB promotes ovarian cancer tumorigenesis by mediating histone H3 lysine 27 trimethylation through binding to EZH2. J Cell Mol Med. 25:37–46. 2021. View Article : Google Scholar : | |
Wu L, Gong Y, Yan T and Zhang H: LINP1 promotes the progression of cervical cancer by scaffolding EZH2, LSD1, and DNMT1 to inhibit the expression of KLF2 and PRSS8. Biochem Cell Biol. 98:591–599. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Li WY, Yang Y, Yan LZ, Zhang SY, He J and Wang JX: LncRNA XIST facilitates cell growth, migration and invasion via modulating H3 histone methylation of DKK1 in neuroblastoma. Cell Cycle. 18:1882–1892. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Yu D, Li H, Lv Y and Li S: Long non-coding RNA UCA1 confers tamoxifen resistance in breast cancer endocrinotherapy through regulation of the EZH2/p21 axis and the PI3K/AKT signaling pathway. Int J Oncol. 54:1033–1042. 2019.PubMed/NCBI | |
Dong H, Wang W, Mo S, Chen R, Zou K, Han J, Zhang F and Hu J: SP1-induced lncRNA AGAP2-AS1 expression promotes chemoresistance of breast cancer by epigenetic regulation of MyD88. J Exp Clin Cancer Res. 37:2022018. View Article : Google Scholar : PubMed/NCBI | |
Loe AKH, Zhu L and Kim TH: Chromatin and noncoding RNA-mediated mechanisms of gastric tumorigenesis. Exp Mol Med. 55:22–31. 2023. View Article : Google Scholar : PubMed/NCBI | |
Qiu Y, Xu M and Huang S: Long noncoding RNAs: Emerging regulators of normal and malignant hematopoiesis. Blood. 138:2327–2336. 2021. View Article : Google Scholar : PubMed/NCBI | |
Qiu Y and Huang S: CTCF-mediated genome organization and leukemogenesis. Leukemia. 34:2295–2304. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ribeiro-Silva C, Vermeulen W and Lans H: SWI/SNF: Complex complexes in genome stability and cancer. DNA Repair (Amst). 77:87–95. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bammidi LS and Gayen S: Multifaceted role of CTCF in X-chromosome inactivation. Chromosoma. 133:217–231. 2024. View Article : Google Scholar : PubMed/NCBI | |
Martitz A and Schulz EG: Spatial orchestration of the genome: Topological reorganisation during X-chromosome inactivation. Curr Opin Genet Dev. 86:1021982024. View Article : Google Scholar : PubMed/NCBI | |
Engreitz JM, Pandya-Jones A, McDonel P, Shishkin A, Sirokman K, Surka C, Kadri S, Xing J, Goren A, Lander ES, et al: The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome. Science. 341:12379732013. View Article : Google Scholar : PubMed/NCBI | |
Kung JT, Kesner B, An JY, Ahn JY, Cifuentes-Rojas C, Colognori D, Jeon Y, Szanto A, del Rosario BC, Pinter SF, et al: Locus-specific targeting to the X chromosome revealed by the RNA interactome of CTCF. Mol Cell. 57:361–375. 2015. View Article : Google Scholar : PubMed/NCBI | |
Luo H, Zhu G, Eshelman MA, Fung TK, Lai Q, Wang F, Zeisig BB, Lesperance J, Ma X, Chen S, et al: HOTTIP-dependent R-loop formation regulates CTCF boundary activity and TAD integrity in leukemia. Mol Cell. 82:833–851 e811. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhu G, Luo H, Feng Y, Guryanova OA, Xu J, Chen S, Lai Q, Sharma A, Xu B, Zhao Z, et al: HOXBLINC long non-coding RNA activation promotes leukemogenesis in NPM1-mutant acute myeloid leukemia. Nat Commun. 12:19562021. View Article : Google Scholar : PubMed/NCBI | |
Lai Q, Hamamoto K, Luo H, Zaroogian Z, Zhou C, Lesperance J, Zha J, Qiu Y, Guryanova OA, Huang S and Xu B: NPM1 mutation reprograms leukemic transcription network via reshaping TAD topology. Leukemia. 37:1732–1736. 2023. View Article : Google Scholar : PubMed/NCBI | |
Venkatraman A, He XC, Thorvaldsen JL, Sugimura R, Perry JM, Tao F, Zhao M, Christenson MK, Sanchez R, Yu JY, et al: Maternal imprinting at the H19-Igf2 locus maintains adult haematopoietic stem cell quiescence. Nature. 500:345–349. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hacisuleyman E, Goff LA, Trapnell C, Williams A, Henao-Mejia J, Sun L, McClanahan P, Hendrickson DG, Sauvageau M, Kelley DR, et al: Topological organization of multichromosomal regions by the long intergenic noncoding RNA Firre. Nat Struct Mol Biol. 21:198–206. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hanly DJ, Esteller M and Berdasco M: Interplay between long non-coding RNAs and epigenetic machinery: Emerging targets in cancer? Philos Trans R Soc Lond B Biol Sci. 373:2018. View Article : Google Scholar : PubMed/NCBI | |
Reddy D, Bhattacharya S, Levy M, Zhang Y, Gogol M, Li H, Florens L and Workman JL: Paraspeckles interact with SWI/SNF subunit ARID1B to regulate transcription and splicing. EMBO Rep. 24:e553452023. View Article : Google Scholar : | |
Bhattacharya A, Wang K, Penailillo J, Chan CN, Fushimi A, Yamashita N, Daimon T, Haratake N, Ozawa H, Nakashoji A, et al: MUC1-C regulates NEAT1 lncRNA expression and paraspeckle formation in cancer progression. Oncogene. 43:2199–2214. 2024. View Article : Google Scholar : PubMed/NCBI | |
Lee VH, Tsang RK, Lo AWI, Chan SY, Chung JC, Tong CC, Leung TW and Kwong DL: SMARCB1 (INI-1)-Deficient sinonasal carcinoma: A systematic review and pooled analysis of treatment outcomes. Cancers (Basel). 14:32852022. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Gong Y, Jin B, Wu C, Yang J, Wang L, Zhang Z and Mao Z: Long non-coding RNA urothelial carcinoma associated 1 induces cell replication by inhibiting BRG1 in 5637 cells. Oncol Rep. 32:1281–1290. 2014. View Article : Google Scholar : PubMed/NCBI | |
Huang M, Wang H, Hu X and Cao X: lncRNA MALAT1 binds chromatin remodeling subunit BRG1 to epigenetically promote inflammation-related hepatocellular carcinoma progression. Oncoimmunology. 8:e15186282019. View Article : Google Scholar | |
Lino Cardenas CL, Kessinger CW, Cheng Y, MacDonald C, MacGillivray T, Ghoshhajra B, Huleihel L, Nuri S, Yeri AS, Jaffer FA, et al: An HDAC9-MALAT1-BRG1 complex mediates smooth muscle dysfunction in thoracic aortic aneurysm. Nat Commun. 9:10092018. View Article : Google Scholar : PubMed/NCBI | |
Neve B, Jonckheere N, Vincent A and Van Seuningen I: Epigenetic regulation by lncRNAs: An overview focused on UCA1 in colorectal cancer. Cancers (Basel). 10:10092018. View Article : Google Scholar | |
Chiba H, Muramatsu M, Nomoto A and Kato H: Two human homologues of Saccharomyces cerevisiae SWI2/SNF2 and Drosophila brahma are transcriptional coactivators cooperating with the estrogen receptor and the retinoic acid receptor. Nucleic Acids Res. 22:1815–1820. 1994. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, He L, Du Y, Zhu P, Huang G, Luo J, Yan X, Ye B, Li C, Xia P, et al: The long noncoding RNA lncTCF7 promotes self-renewal of human liver cancer stem cells through activation of Wnt signaling. Cell Stem Cell. 16:413–425. 2015. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Li W, Hoffman AR, Cui J and Hu JF: The Nucleus/Mitochondria-Shuttling LncRNAs function as new epigenetic regulators of mitophagy in cancer. Front Cell Dev Biol. 9:6996212021. View Article : Google Scholar : PubMed/NCBI | |
Prensner JR, Iyer MK, Sahu A, Asangani IA, Cao Q, Patel L, Vergara IA, Davicioni E, Erho N, Ghadessi M, et al: The long noncoding RNA SChLAP1 promotes aggressive prostate cancer and antagonizes the SWI/SNF complex. Nat Genet. 45:1392–1398. 2013. View Article : Google Scholar : PubMed/NCBI | |
Cimadamore A, Gasparrini S, Mazzucchelli R, Doria A, Cheng L, Lopez-Beltran A, Santoni M, Scarpelli M and Montironi R: Long Non-coding RNAs in prostate cancer with emphasis on second chromosome locus associated with Prostate-1 expression. Front Oncol. 7:3052017. View Article : Google Scholar | |
Boo SH and Kim YK: The emerging role of RNA modifications in the regulation of mRNA stability. Exp Mol Med. 52:400–408. 2020. View Article : Google Scholar : PubMed/NCBI | |
de Santiago PR, Blanco A, Morales F, Marcelain K, Harismendy O, Sjöberg Herrera M and Armisén R: Immune-related IncRNA LINC00944 responds to variations in ADAR1 levels and it is associated with breast cancer prognosis. Life Sci. 268:1189562021. View Article : Google Scholar : PubMed/NCBI | |
Sun Y, Ge J, Shao F, Ren Z, Huang Z, Ding Z, Dong L, Chen J, Zhang J and Zang Y: Long noncoding RNA AI662270 promotes kidney fibrosis through enhancing METTL3-mediated m6A modification of CTGF mRNA. FASEB J. 37:e230712023. View Article : Google Scholar | |
Cao Y, Di X, Cong S, Tian C, Wang Y, Jin X, Zhao M, Zhou X, Li R and Wang K: RBM10 recruits METTL3 to induce N6-methyladenosine-MALAT1-dependent modification, inhibiting the invasion and migration of NSCLC. Life Sci. 315:1213592023. View Article : Google Scholar : PubMed/NCBI | |
Fang Y, Wu X, Gu Y, Shi R, Yu T, Pan Y, Zhang J, Jing X, Ma P and Shu Y: LINC00659 cooperated with ALKBH5 to accelerate gastric cancer progression by stabilising JAK1 mRNA in an m6 A-YTHDF2-dependent manner. Clin Transl Med. 13:e12052023. View Article : Google Scholar | |
Salameh A, Lee AK, Cardo-Vila M, Nunes DN, Efstathiou E, Staquicini FI, Dobroff AS, Marchiò S, Navone NM, Hosoya H, et al: PRUNE2 is a human prostate cancer suppressor regulated by the intronic long noncoding RNA PCA3. Proc Natl Acad Sci USA. 112:8403–8408. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhu L, Zhu Y, Han S, Chen M, Song P, Dai D, Xu W, Jiang T, Feng L, Shin VY, et al: Impaired autophagic degradation of lncRNA ARHGAP5-AS1 promotes chemoresistance in gastric cancer. Cell Death Dis. 10:3832019. View Article : Google Scholar : PubMed/NCBI | |
Mao J, Qiu H and Guo L: LncRNA HCG11 mediated by METTL14 inhibits the growth of lung adenocarcinoma via IGF2BP2/LATS1. Biochem Biophys Res Commun. 580:74–80. 2021. View Article : Google Scholar : PubMed/NCBI | |
Picardi E, D'Erchia AM, Gallo A, Montalvo A and Pesole G: Uncovering RNA editing sites in long Non-Coding RNAs. Front Bioeng Biotechnol. 2:642014. View Article : Google Scholar : PubMed/NCBI | |
Ma CP, Liu H, Yi-Feng Chang I, Wang WC, Chen YT, Wu SM, Chen HW, Kuo YP, Shih CT, Li CY and Tan BC: ADAR1 promotes robust hypoxia signaling via distinct regulation of multiple HIF-1alpha-inhibiting factors. EMBO Rep. 20:e471072019. View Article : Google Scholar | |
Salameh A, Lee AK, Cardó-Vila M, Nunes DN, Efstathiou E, Staquicini FI, Dobroff AS, Marchiò S, Navone NM, Hosoya H, et al: PRUNE2 is a human prostate cancer suppressor regulated by the intronic long noncoding RNA. Proc Natl Acad Sci USA. 112:8403–8408. 2015. View Article : Google Scholar | |
Arun G, Diermeier S, Akerman M, Chang KC, Wilkinson JE, Hearn S, Kim Y, MacLeod AR, Krainer AR and Norton L: Differentiation of mammary tumors and reduction in metastasis upon Malat1 lncRNA loss. Genes Dev. 30:34–51. 2016. View Article : Google Scholar : | |
Zhao C, Ling X, Xia Y, Yan B and Guan Q: The m6A methyltransferase METTL3 controls epithelial-mesenchymal transition, migration and invasion of breast cancer through the MALAT1/miR-26b/HMGA2 axis. Cancer Cell Int. 21:4412021. View Article : Google Scholar : PubMed/NCBI | |
Sun T, Wu Z, Wang X, Wang Y, Hu X, Qin W, Lu S, Xu D, Wu Y, Chen Q, et al: LNC942 promoting METTL14-mediated m6A methylation in breast cancer cell proliferation and progression. Oncogene. 39:5358–5372. 2020. View Article : Google Scholar : PubMed/NCBI | |
Pu J, Xu Z, Huang Y, Nian J, Yang M, Fang Q, Wei Q, Huang Z, Liu G, Wang J, et al: N6-methyladenosine-modified FAM111A-DT promotes hepatocellular carcinoma growth via epigenetically activating FAM111A. Cancer Sci. 114:3649–3665. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhou L, Jiang J, Huang Z, Jin P, Peng L, Luo M, Zhang Z, Chen Y, Xie N, Gao W, et al: Hypoxia-induced lncRNA STEAP3-AS1 activates Wnt/β-catenin signaling to promote colorectal cancer progression by preventing m6A-mediated degradation of STEAP3 mRNA. Mol Cancer. 21:1682022. View Article : Google Scholar | |
Wang X, Liu C, Zhang S, Yan H, Zhang L, Jiang A, Liu Y, Feng Y, Li D, Guo Y, et al: N6-methyladenosine modification of MALAT1 promotes metastasis via reshaping nuclear speckles. Dev Cell. 56:702–715.e8. 2021. View Article : Google Scholar | |
Yang H, Hu Y, Weng M, Liu X, Wan P, Hu Y, Ma M, Zhang Y, Xia H and Lv K: Hypoxia inducible lncRNA-CBSLR modulates ferroptosis through m6A-YTHDF2-dependent modulation of CBS in gastric cancer. J Adv Res. 37:91–106. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Wang Y, Zhang Z, Zhu C, Wang C, Yu F and Zhao E: Long Non-Coding RNA NRON promotes tumor proliferation by regulating ALKBH5 and nanog in gastric cancer. J Cancer. 12:6861–6872. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhang S, Zhao BS, Zhou A, Lin K, Zheng S, Lu Z, Chen Y, Sulman EP, Xie K, Bögler O, et al: m6A Demethylase ALKBH5 maintains tumorigenicity of glioblastoma Stem-like cells by sustaining FOXM1 expression and cell proliferation program. Cancer Cell. 31:591–606.e6. 2017. View Article : Google Scholar | |
Zou Z, Zhou S, Liang G, Tang Z, Li K, Tan S, Zhang X and Zhu X: The pan-cancer analysis of the two types of uterine cancer uncovered clinical and prognostic associations with m6A RNA methylation regulators. Mol Omics. 17:438–453. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhu P, He F, Hou Y, Tu G, Li Q, Jin T, Zeng H, Qin Y, Wan X, Qiao Y, et al: A novel hypoxic long noncoding RNA KB-1980E6.3 maintains breast cancer stem cell stemness via interacting with IGF2BP1 to facilitate c-Myc mRNA stability. Oncogene. 40:1609–1627. 2021. View Article : Google Scholar : PubMed/NCBI | |
Nadhan R, Isidoro C, Song YS and Dhanasekaran DN: LncRNAs and the cancer epigenome: Mechanisms and therapeutic potential. Cancer Lett. 605:2172972024. View Article : Google Scholar : PubMed/NCBI | |
Yang L, Tang L, Min Q, Tian H, Li L, Zhao Y, Wu X, Li M, Du F, Chen Y, et al: Emerging role of RNA modification and long noncoding RNA interaction in cancer. Cancer Gene Ther. 31:816–830. 2024. View Article : Google Scholar : PubMed/NCBI | |
Kim SY, Na MJ, Yoon S, Shin E, Ha JW, Jeon S and Nam SW: The roles and mechanisms of coding and noncoding RNA variations in cancer. Exp Mol Med. 56:1909–1920. 2024. View Article : Google Scholar : PubMed/NCBI | |
Quinn JJ and Chang HY: Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet. 17:47–62. 2016. View Article : Google Scholar | |
Liu S, Jiao B, Zhao H, Liang X, Jin F, Liu X and Hu JF: LncRNAs-circRNAs as rising epigenetic binary superstars in regulating lipid metabolic reprogramming of cancers. Adv Sci (Weinh). 11:e23035702024. View Article : Google Scholar | |
Mattick JS, Amaral PP, Carninci P, Carpenter S, Chang HY, Chen LL, Chen R, Dean C, Dinger ME, Fitzgerald KA, et al: Long non-coding RNAs: Definitions, functions, challenges and recommendations. Nat Rev Mol Cell Biol. 24:430–447. 2023. View Article : Google Scholar : PubMed/NCBI | |
Liu SJ, Dang HX, Lim DA, Feng FY and Maher CA: Long noncoding RNAs in cancer metastasis. Nat Rev Cancer. 21:446–460. 2021. View Article : Google Scholar : PubMed/NCBI | |
Qian Y, Shi L and Luo Z: Long Non-coding RNAs in Cancer: Implications for diagnosis, prognosis, and therapy. Front Med (Lausanne). 7:6123932020. View Article : Google Scholar : PubMed/NCBI | |
Gong C, Li Z, Ramanujan K, Clay I, Zhang Y, Lemire-Brachat S and Glass DJ: A long non-coding RNA, LncMyoD, regulates skeletal muscle differentiation by blocking IMP2-mediated mRNA translation. Dev Cell. 34:181–191. 2015. View Article : Google Scholar : PubMed/NCBI | |
Davodabadi F, Farasati Far B, Sargazi S, Fatemeh Sajjadi S, Fathi-Karkan S, Mirinejad S, Ghotekar S, Sargazi S and Rahman MM: Nanomaterials-based targeting of long Non-Coding RNAs in cancer: A Cutting-edge review of current trends. ChemMedChem. 19:e2023005282024. View Article : Google Scholar : PubMed/NCBI | |
Han S, Cao Y, Guo T, Lin Q and Luo F: Targeting lncRNA/Wnt axis by flavonoids: A promising therapeutic approach for colorectal cancer. Phytother Res. 36:4024–4040. 2022. View Article : Google Scholar : PubMed/NCBI | |
Parashar D, Singh A, Gupta S, Sharma A, Sharma MK, Roy KK, Chauhan SC and Kashyap VK: Emerging roles and potential applications of Non-Coding RNAs in Cervical cancer. Genes (Basel). 13:12542022. View Article : Google Scholar : PubMed/NCBI | |
Goyal A, Myacheva K, Gross M, Klingenberg M, Duran Arque B and Diederichs S: Challenges of CRISPR/Cas9 applications for long non-coding RNA genes. Nucleic Acids Res. 45:e122017.PubMed/NCBI | |
Cetinkaya M and Baran Y: MicroRNAs and long non-coding RNAs as novel targets in Anti-cancer drug development. Curr Pharm Biotechnol. 24:913–925. 2023. View Article : Google Scholar | |
Ozcan G, Ozpolat B, Coleman RL, Sood AK and Lopez-Berestein G: Preclinical and clinical development of siRNA-based therapeutics. Adv Drug Deliv Rev. 87:108–119. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wahlestedt C: Targeting long non-coding RNA to therapeutically upregulate gene expression. Nat Rev Drug Discov. 12:433–446. 2013. View Article : Google Scholar : PubMed/NCBI | |
Alegra-Torres JA, Baccarelli A and Bollati V: Epigenetics and lifestyle. Epigenomics. 3:267–277. 2011. View Article : Google Scholar | |
Basu AK: DNA Damage, mutagenesis and cancer. Int J Mol Sci. 19:9702018. View Article : Google Scholar : PubMed/NCBI | |
Cheng D, Deng J, Zhang B, He X, Meng Z, Li G, Ye H, Zheng S, Wei L, Deng X, et al: LncRNA HOTAIR epigenetically suppresses miR-122 expression in hepatocellular carcinoma via DNA methylation. EBioMedicine. 36:159–170. 2018. View Article : Google Scholar : PubMed/NCBI | |
Vaasjo LO: LncRNAs and chromatin modifications pattern m6A methylation at the untranslated regions of mRNAs. Front Genet. 13:8667722022. View Article : Google Scholar : | |
Vaid R, Thombare K, Mendez A, Burgos-Panadero R, Djos A, Jachimowicz D, Lundberg KI, Bartenhagen C, Kumar N, Tümmler C, et al: METTL3 drives telomere targeting of TERRA lncRNA through m6A-dependent R-loop formation: A therapeutic target for ALT-positive neuroblastoma. Nucleic Acids Res. 52:2648–2671. 2024. View Article : Google Scholar : PubMed/NCBI | |
Anastasiadou E, Jacob LS and Slack FJ: Non-coding RNA networks in cancer. Nat Rev Cancer. 18:5–18. 2018. View Article : Google Scholar | |
Marchese FP, Raimondi I and Huarte M: The multidimensional mechanisms of long noncoding RNA function. Genome Biol. 18:2062017. View Article : Google Scholar : PubMed/NCBI | |
Cho SW, Xu J, Sun R, Mumbach MR, Carter AC, Chen YG, Yost KE, Kim J, He J, Nevins SA, et al: Promoter of lncRNA Gene PVT1 is a Tumor-suppressor DNA boundary element. Cell. 173:1398–1412.e22. 2018. View Article : Google Scholar : PubMed/NCBI | |
Arun G, Aggarwal D and Spector DL: MALAT1 Long Non-coding RNA: Functional implications. Noncoding RNA. 6:222020.PubMed/NCBI | |
Chen PB, Chen HV, Acharya D, Rando OJ and Fazzio TG: R loops regulate promoter-proximal chromatin architecture and cellular differentiation. Nat Struct Mol Biol. 22:999–1007. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chu C, Qu K, Zhong FL, Artandi SE and Chang HY: Genomic maps of long Noncoding RNA occupancy reveal principles of RNA-Chromatin interactions. Mol Cell. 44:667–678. 2011. View Article : Google Scholar : PubMed/NCBI | |
Chu C and Chang HY: ChIRP-MS: RNA-directed proteomic discovery. Methods Mol Biol. 1861:37–45. 2018. View Article : Google Scholar : PubMed/NCBI | |
de Lera AR and Ganesan A: Epigenetic polypharmacology: From combination therapy to multitargeted drugs. Clin Epigenetics. 8:1052016. View Article : Google Scholar : PubMed/NCBI | |
Delgado-Morales R, Agís-Balboa RC, Esteller M and Berdasco M: Epigenetic mechanisms during ageing and neurogenesis as novel therapeutic avenues in human brain disorders. Clin Epigenetics. 9:2017. View Article : Google Scholar : PubMed/NCBI | |
Wu SC, Kallin EM and Zhang Y: Role of H3K27 methylation in the regulation of lncRNA expression. Cell Res. 20:1109–1116. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kornienko AE, Dotter CP, Guenzl PM, Gisslinger H, Gisslinger B, Cleary C, Kralovics R, Pauler FM and Barlow DP: Long non-coding RNAs display higher natural expression variation than protein-coding genes in healthy humans. Genome Biol. 17:142016. View Article : Google Scholar : PubMed/NCBI | |
Pang KC, Frith MC and Mattick JS: Rapid evolution of noncoding RNAs: Lack of conservation does not mean lack of function. Trends Genet. 22:1–5. 2006. View Article : Google Scholar | |
Bohmdorfer G and Wierzbicki AT: Control of chromatin structure by long noncoding RNA. Trends Cell Biol. 25:623–632. 2015. View Article : Google Scholar : PubMed/NCBI | |
Xing Z, Lin A, Li C, Liang K, Wang S, Liu Y, Park PK, Qin L, Wei Y, Hawke DH, et al: lncRNA directs cooperative epigenetic regulation downstream of chemokine signals. Cell. 159:1110–1125. 2014. View Article : Google Scholar : PubMed/NCBI |