Tum-1, a tumstatin fragment, gene delivery into hepatocellular carcinoma suppresses tumor growth through inhibiting angiogenesis
- Authors:
- Published online on: July 1, 2008 https://doi.org/10.3892/ijo.33.1.33
- Pages: 33-40
Metrics: Total
Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Abstract
Since hepatocellular carcinoma (HCC) is a hypervascular cancer, anti-angiogenic therapy is a promising approach to treat HCC. In the present study, we investigated the antiangiogenic and antitumor effects of tum-1, a fragment of tumstatin, gene transduction into HCC in vitro and in vivo. Tum-1 gene was cloned into a pSecTag2B mammalian expression vehicle to construct pSecTag2B-tum-1. pSecTag2B-tum-1 or vehicle were transfected into human HCC cells, PLC/PRF/5 cells stably and Huh-7 cells tran-siently. pSecTag2B-tum-1 transfection slightly repressed the proliferation of both PLC/PRF/5 and Huh-7 cells in vitro. Addition of conditioned media (CM) from tum-1 expressing PLC/PRF/5 cells significantly inhibited the spontaneous and vascular endothelial growth factor (VEGF)-induced proliferation and migration of human umbilical vein endothelial cells (HUVEC) in vitro with diminishing the VEGF-induced phosphorylation of both Akt and extracellular signal-regulated kinase (ERK) that are known to mediate VEGF-induced proliferation and migration of endothelial cells. In in vivo experiments, intratumoral injection of pSecTag2B-tum-1 significantly repressed the growth of pre-established Huh-7 tumors in athymic mouse models accompanying the decreased density of CD34 positive vessels in tumors. In conclusion, our results suggest that antiangiogenic gene therapy using tum-1 gene may be an efficient strategy for the treatment of HCC.