Tyrphostin AG1478 suppresses proliferation and invasion of human breast cancer cells
- Authors:
- Published online on: September 1, 2008 https://doi.org/10.3892/ijo_00000045
- Pages: 595-602
Metrics: Total
Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Abstract
Inhibition of epidermal growth factor receptor (EGFR) signaling is a promising treatment strategy for malignant tumors. In this study, we evaluated the effectiveness of tyrphostin AG1478, a potent and specific inhibitor of EGFR tyrosine kinase, on the growth, apoptosis and invasion of breast cancer cells. Western blotting demonstrated that AG1478 inhibited the phosphorylation of EGFR, ERK1/2 and AKT in a dose-dependent manner. Three proliferation analyses, MTT, cell counting, and clone formation assay, consistently showed that AG1478 significantly inhibited cell proliferation in a dose-dependent manner. FACS analysis demonstrated that AG1478 promoted cell apoptosis. In addition, TRAP assay exhibited that AG1478 significantly suppressed telomerase activity of tumor cells, which was parallel with growth inhibition. Semi-qantitative RT-PCR revealed that the suppression of telomerase activity was correlated with the decreased expression of human telomerase catalytic subunit (hTERT) mRNA, the rate-limiting determinant of its enzyme activity. These data suggest that AG1478 suppressed cellular growth by inhibiting cellular proliferation, inducing apoptosis and inhibiting telomerase activity. Furthermore, we also examined the effects of AG1478 on cellular invasion. Boyden chamber invasion assay showed that AG1478 significantly inhibited cell invasion in a dose-dependent manner. Western blotting revealed that AG1478 could down-regulate the expression of MMP-9, which may be one of the mechanisms by which AG1478 suppressed cellular invasion. In conclusion, this study demonstrated that Tyrphostin AG1478 effectively inhibited the proliferation and invasion of breast cancer cells. Tyrphostin AG1478 may be a potential EGFR-targeted therapeutic agent for breast cancer.