Deregulation of FOXO3A during prostate cancer progression
- Authors:
- Published online on: June 1, 2009 https://doi.org/10.3892/ijo_00000291
- Pages: 1613-1620
Metrics:
Total
Views: 0 (Spandidos Publications: | PMC Statistics:
)
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics:
)
Abstract
Forkhead box transcription factor FOXO3A, an important regulator of cellular function, is thought to act as a tumor suppressor. We studied whether alterations in FOXO3A activity occur in prostate tumorigenesis. Our studies demonstrate that FOXO3A activity is negatively regulated by Akt/PKB through posttranslational modifications. In prostate cancer cells, Akt activation causes increased accumulation of FOXO3A and its binding chaperone protein 14-3-3 in the cytosol. Higher levels of FOXO3A in the cytosol correlated with phosphorylation at Ser253, which accounted for its nuclear exclusion. Dominant negative Akt approach in PC-3 cells increased FOXO3A accumulation in the nucleus, causing upregulation of the downstream target, MnSOD. Conversely, stable DU145-Akt over-expressing cells exhibited decreased FOXO3A levels in the nucleus. Similar findings were noted in prostate tumor specimens, in which marked cytoplasmic accumulation of FOXO3A and 14-3-3 in prostate tumors was observed with increasing Gleason grade, in contrast to exclusively nuclear accumulation in benign prostate cells. These findings correlate with decreased FOXO3A DNA binding activity along with down-modulation of FOXO3A transcriptional activity with increasing tumor grade. Our findings demonstrate that tumor associated alterations and redistribution of FOXO3A are frequent events in the etiology of prostate cancer.