Specific mitochondrial calcium overload induces mitochondrial fission in prostate cancer cells

  • Authors:
    • Ismail Kaddour-Djebbar
    • Vivek Choudhary
    • Craig Brooks
    • Taghreed Ghazaly
    • Vijayabaskar Lakshmikanthan
    • Zheng Dong
    • M. Vijay Kumar
  • View Affiliations

  • Published online on: June 1, 2010     https://doi.org/10.3892/ijo_00000629
  • Pages: 1437-1444
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Mitochondria are structurally complex organelles that undergo fragmentation or fission in apoptotic cells. Mitochondrial fission requires the cytoplasmic dynamin-related protein, Drp1, which translocates to the mitochondria during apoptosis and interacts with the mitochondrial protein, Fis1. Finely tuned changes in cellular calcium modulate a variety of intracellular functions; in resting cells, the level of mitochondrial calcium is low, while it is higher during apoptosis. Mitochondria take up Ca2+ via the Uniporter and extrude it to the cytoplasm through the mitochondrial Na+/Ca2+ exchanger. Overload of Ca2+ in the mitochondria leads to their damage, affecting cellular function and survival. The mitochondrial Na+/Ca2+ exchanger was blocked by benzodiazepine, CGP37157 (CGP) leading to increased mitochondrial calcium and enhancing the apoptotic effects of TRAIL, TNFα related apoptosis inducing ligand. In the present study, we observed that increasing mitochondrial calcium induced mitochondrial fragmentation, which correlated with the presence of Drp1 at the mitochondria in CGP treated cells. Under these conditions, we observed interactions between Drp1 and Fis1. The importance of Drp1 in fragmentation was confirmed by transfection of dominant negative Drp1 construct. However, fragmentation of the mitochondria was not sufficient to induce apoptosis, although it enhanced TRAIL-induced apoptosis. Furthermore, oligomerization of Bak was partially responsible for the increased apoptosis in cells treated with both CGP and TRAIL. Thus, our results show that combination of an apoptogenic agent and an appropriate calcium channel blocker provide therapeutic advantages.

Related Articles

Journal Cover

June 2010
Volume 36 Issue 6

Print ISSN: 1019-6439
Online ISSN:1791-2423

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Kaddour-Djebbar I, Choudhary V, Brooks C, Ghazaly T, Lakshmikanthan V, Dong Z and Kumar MV: Specific mitochondrial calcium overload induces mitochondrial fission in prostate cancer cells. Int J Oncol 36: 1437-1444, 2010.
APA
Kaddour-Djebbar, I., Choudhary, V., Brooks, C., Ghazaly, T., Lakshmikanthan, V., Dong, Z., & Kumar, M.V. (2010). Specific mitochondrial calcium overload induces mitochondrial fission in prostate cancer cells. International Journal of Oncology, 36, 1437-1444. https://doi.org/10.3892/ijo_00000629
MLA
Kaddour-Djebbar, I., Choudhary, V., Brooks, C., Ghazaly, T., Lakshmikanthan, V., Dong, Z., Kumar, M. V."Specific mitochondrial calcium overload induces mitochondrial fission in prostate cancer cells". International Journal of Oncology 36.6 (2010): 1437-1444.
Chicago
Kaddour-Djebbar, I., Choudhary, V., Brooks, C., Ghazaly, T., Lakshmikanthan, V., Dong, Z., Kumar, M. V."Specific mitochondrial calcium overload induces mitochondrial fission in prostate cancer cells". International Journal of Oncology 36, no. 6 (2010): 1437-1444. https://doi.org/10.3892/ijo_00000629