Binding of the transcription factor Slug to the L1CAM promoter is essential for transforming growth factor-β1 (TGF-β)-induced L1CAM expression in human pancreatic ductal adenocarcinoma cells
- Authors:
- Published online on: January 1, 2011 https://doi.org/10.3892/ijo_00000846
- Pages: 257-266
Metrics: Total
Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Abstract
Members of the Slug/Snail family of transcription factors are thought to drive epithelial-mesenchymal-transition (EMT) in preneoplastic epithelial cells, thereby contributing to malignant transformation. One mediator in the EMT of pancreatic ductal adenocarcinoma (PDAC) cells and a potential target gene of Slug is the cellular adhesion molecule L1CAM. Using the human pancreatic ductal epithelial cell line H6c7 and the PDAC cell line Panc1, we could show that along with TGF-β1-induced EMT, L1CAM expression is increased in a Slug- but not Snail-dependent fashion. Two E-box recognition motifs in the L1CAM promoter upstream of the most distal transcriptional start site could be verified by gel shift and supershift assay to interact with Slug. ChIP assays detected an increased interaction of Slug with both recognition motifs of the human L1CAM promoter in TGF-β1-treated H6c7 cells, whereas binding of Snail was downregulated. Moreover, ChIP assays with Panc1 cells confirmed this interaction of Slug with the human L1CAM promoter and further detected an interaction of both recognition sites with RNA-polymerase II in a Slug-dependent fashion. Luciferase reporter gene assays using wild-type or single- and double-mutated variants of the L1CAM promoter confirmed transcriptional activation by Slug involving both recognition motifs. By demonstrating the direct transcriptional control of L1CAM expression through Slug during TGF-β1-induced EMT of PDAC cells, our findings point to a novel mechanism by which Slug contributes quite early to tumorigenesis. Moreover, our study is the first one describing the control of the human L1CAM promoter in tumor cells.