1
|
Couper J: On the effects of black oxide of
manganese when inhaled into the lungs. Br Ann Med Pharmacol.
1:41–42. 1837.
|
2
|
Aschner JL, Anderson A, Slaughter JC,
Aschner M, Steele S, Beller A, Mouvery A, Furlong HM and Maitre NL:
Neuroimaging identifies increased manganese deposition in infants
receiving parenteral nutrition. Am J Clin Nutr. 102:1482–1489.
2015.PubMed/NCBI View Article : Google Scholar
|
3
|
Stepens A, Groma V, Skuja S, Platkājis A,
Aldiņš P, Ekšteina I, Mārtiņsone I, Bricis R and Donaghy M: The
outcome of the movement disorder in methcathinone abusers:
Clinical, MRI and manganesemia changes, and neuropathology. Eur J
Neurol. 21:199–205. 2014.PubMed/NCBI View Article : Google Scholar
|
4
|
Anagianni S and Tuschl K: Genetic
disorders of manganese metabolism. Curr Neurol Neurosci Rep.
19(33)2019.PubMed/NCBI View Article : Google Scholar
|
5
|
da Silva CJ, da Rocha AJ, Jeronymo S,
Mendes MF, Milani FT, Maia AC Jr, Braga FT, Sens YA and Miorin LA:
A preliminary study revealing a new association in patients
undergoing maintenance hemodialysis: Manganism symptoms and T1
hyperintense changes in the basal ganglia. AJNR Am J Neuroradiol.
28:1474–1479. 2007.PubMed/NCBI View Article : Google Scholar
|
6
|
Tuschl K, Clayton PT, Gospe SM Jr, Gulab
S, Ibrahim S, Singhi P, Aulakh R, Ribeiro RT, Barsottini OG, Zaki
MS, et al: Syndrome of hepatic cirrhosis, dystonia, polycythemia,
and hypermanganesemia caused by mutations in SLC30A10, a manganese
transporter in man. Am J Hum Genet. 90:457–466. 2012.PubMed/NCBI View Article : Google Scholar
|
7
|
Taba P: Metals and movement disorders.
Curr Opin Neurol. 26:435–441. 2013.PubMed/NCBI View Article : Google Scholar
|
8
|
Racette BA: Manganism in the 21st century:
The Hanninen lecture. Neurotoxicology. 45:201–207. 2014.PubMed/NCBI View Article : Google Scholar
|
9
|
Racette BA, Gross A, Criswell SR,
Checkoway H and Searles Nielsen S: A screening tool to detect
clinical manganese neurotoxicity. Neurotoxicology. 64:12–18.
2018.PubMed/NCBI View Article : Google Scholar
|
10
|
Myers JE, Fine J, Ormond-Brown D, Rice J,
Thomson A and Thompson ML: Estimating the prevalence of clinical
manganism using a cascaded screening process in a South African
manganese smelter. Neurotoxicology. 30:934–940. 2009.PubMed/NCBI View Article : Google Scholar
|
11
|
IRSST: Management of Occupational
Management of Occupational Manganism Consensus of an Experts'
Panel. Report R 417, 2005. Available at: https://www.irsst.qc.ca/media/documents/pubirsst/r-417.pdf.
|
12
|
Ministry of Health of the People's
Republic of China: Diagnostic Criteria for Occupational Chronic
Manganese Poisoning. GBZ 3-2006, March 2006. Available at
https://niohp.chinacdc.cn/zyysjk/zywsbzml/201301/P020130105471460363503.pdf
(Translated from the original Chinese work with Google
Translate).
|
13
|
Rutchik JS, Zheng W, Jiang Y and Mo X: How
does an occupational neurologist assess welders and steelworkers
for a manganese-induced movement disorder? An international team's
experiences in Guanxi, China, part I. J Occup Environ Med.
54:1432–1434. 2012.PubMed/NCBI View Article : Google Scholar
|
14
|
Calne DB, Chu NS, Huang CC, Lu CS and
Olanow W: Manganism and idiopathic parkinsonism: similarities and
differences. Neurology. 44:1583–1586. 1994.PubMed/NCBI View Article : Google Scholar
|
15
|
Olanow CW: Manganese-induced parkinsonism
and Parkinson's disease. Ann NY Acad Sci. 1012:209–223.
2004.PubMed/NCBI View Article : Google Scholar
|
16
|
Huang CC: Parkinsonism induced by chronic
manganese intoxication-an experience in Taiwan. Chang Gung Med J.
30:385–395. 2007.PubMed/NCBI
|
17
|
Kim Y: Neuroimaging in manganism.
Neurotoxicology. 27:369–372. 2006.PubMed/NCBI View Article : Google Scholar
|
18
|
Jankovic J: Searching for a relationship
between manganese and welding and Parkinson's disease. Neurology.
64:2021–2028. 2005.PubMed/NCBI View Article : Google Scholar
|
19
|
Santamaria AB, Cushing CA, Antonini JM,
Finley BL and Mowat FS: State-of-the-science review: Does manganese
exposure during welding pose a neurological risk? J Toxicol Environ
Health B Crit Rev. 10:417–465. 2007.PubMed/NCBI View Article : Google Scholar
|
20
|
Karyakina NA, Shilnikova N, Farhat N,
Ramoju S, Cline B, Momoli F, Mattison D, Jensen N, Terrell R and
Krewski D: Biomarkers for occupational manganese exposure. Crit Rev
Toxicol. 52:636–663. 2022.PubMed/NCBI View Article : Google Scholar
|
21
|
Shilnikova N, Karyakina N, Farhat N,
Ramoju S, Cline B, Momoli F, Mattison D, Jensen N, Terrell R and
Krewski D: Biomarkers of environmental manganese exposure. Crit Rev
Toxicol. 52:325–343. 2022.PubMed/NCBI View Article : Google Scholar
|
22
|
Balachandran RC, Yanko FM, Cheng P, Prince
LM, Rivers CN, Morcillo P, Akinyemi AJ, Tabbassum S, Pfalzer AC,
Nie LH, et al: Rodent hair is a Poor biomarker for internal
manganese exposure. Food Chem Toxicol. 157(112555)2021.PubMed/NCBI View Article : Google Scholar
|
23
|
Ward EJ, Edmondson DA, Nour MM, Snyder S,
Rosenthal FS and Dydak U: Toenail manganese: A sensitive and
specific biomarker of exposure to manganese in career welders. Ann
Work Expo Health. 62:101–111. 2017.PubMed/NCBI View Article : Google Scholar
|
24
|
Ward E, Bowler R, Nour M, Snyder S,
Rosenthal F and Dydak U: Exposure to metal mixtures in welding
fume: Effects on neuropsychological functions. Toxicol Sci Suppl.
150(1596)2016.
|
25
|
Baker MG, Simpson CD, Stover B, Sheppard
L, Checkoway H, Racette BA and Seixas NS: Blood manganese as an
exposure biomarker: State of the evidence. J Occup Environ Hyg.
11:210–217. 2014.PubMed/NCBI View Article : Google Scholar
|
26
|
Hoet P and Roels HA (eds): Significance
and Usefulness of Biomarkers of Exposure to Manganese. Vol 22.
Royal Society of Chemistry, pp355-401, 2015.
|
27
|
Park RM: Neurobehavioral deficits and
parkinsonism in occupations with manganese exposure: A review of
methodological issues in the epidemiological literature. Saf Health
Work. 4:123–135. 2013.PubMed/NCBI View Article : Google Scholar
|
28
|
Zheng W, Fu SX, Dydak U and Cowan DM:
Biomarkers of manganese intoxication. Neurotoxicology. 32:1–8.
2011.PubMed/NCBI View Article : Google Scholar
|
29
|
Gutiérrez-González E, García-Esquinas E,
de Larrea-Baz NF, Salcedo-Bellido I, Navas-Acien A, Lope V,
Gómez-Ariza JL, Pastor R, Pollán M and Pérez-Gómez B: Toenails as
biomarker of exposure to essential trace metals: A review. Environ
Res. 179(108787)2019.PubMed/NCBI View Article : Google Scholar
|
30
|
O'Neal SL and Zheng W: Manganese toxicity
upon overexposure: A decade in review. Curr Environ Health Rep.
2:315–328. 2015.PubMed/NCBI View Article : Google Scholar
|
31
|
Baker MG, Simpson CD, Sheppard L, Stover
B, Morton J, Cocker J and Seixas N: Variance components of
short-term biomarkers of manganese exposure in an inception cohort
of welding trainees. J Trace Elem Med Biol. 29:123–129.
2015.PubMed/NCBI View Article : Google Scholar
|
32
|
Hoet P, Vanmarcke E, Geens T, Deumer G,
Haufroid V and Roels HA: Manganese in plasma: A promising biomarker
of exposure to Mn in welders. A pilot study. Toxicol Lett.
213:69–74. 2012.PubMed/NCBI View Article : Google Scholar
|
33
|
Edmondson DA, Ma RE, Yeh CL, Ward E,
Snyder S, Azizi E, Zauber SE, Wells EM and Dydak U: Reversibility
of neuroimaging markers influenced by lifetime occupational
manganese exposure. Toxicol Sci. 172:181–190. 2019.PubMed/NCBI View Article : Google Scholar
|
34
|
Long Z, Jiang YM, Li XR, Fadel W, Xu J,
Yeh CL, Long LL, Luo HL, Harezlak J, Murdoch JB, et al:
Vulnerability of welders to manganese exposure-a neuroimaging
study. Neurotoxicology. 45:285–292. 2014.PubMed/NCBI View Article : Google Scholar
|
35
|
Yeh C, Johnson C, Ma R, Dharmadhikari S,
Snyder S and Dydak U: Whole-Brain Visualization of Manganese
Deposition in Welders. Proc Intl Mag Reson Med. 25(3047)2017.
|
36
|
Bowler RM, Yeh CL, Adams SW, Ward EJ, Ma
RE, Dharmadhikari S, Snyder SA, Zauber SE, Wright CW and Dydak U:
Association of MRI T1 relaxation time with neuropsychological test
performance in manganese-exposed welders. Neurotoxicology.
64:19–29. 2018.PubMed/NCBI View Article : Google Scholar
|
37
|
Ma RE, Ward EJ, Yeh CL, Snyder S, Long Z,
Gokalp Yavuz F, Zauber SE and Dydak U: Thalamic GABA levels and
occupational manganese neurotoxicity: Association with exposure
levels and brain MRI. Neurotoxicology. 64:30–42. 2018.PubMed/NCBI View Article : Google Scholar
|
38
|
Baker MG, Criswell SR, Racette BA, Simpson
CD, Sheppard L, Checkoway H and Seixas NS: Neurological outcomes
associated with low-level manganese exposure in an inception cohort
of asymptomatic welding trainees. Scand J Work Environ Health.
41:94–101. 2015.PubMed/NCBI View Article : Google Scholar
|
39
|
Criswell SR, Perlmutter JS, Huang JL,
Golchin N, Flores HP, Hobson A, Aschner M, Erikson KM, Checkoway H
and Racette BA: Basal ganglia intensity indices and diffusion
weighted imaging in manganese-exposed welders. Occup Environ Med.
69:437–443. 2012.PubMed/NCBI View Article : Google Scholar
|
40
|
Jensen N, Terrell R, Ramoju S, Shilnikova
N, Farhat N, Karyakina N, Cline BH, Momoli F, Mattison D and
Krewski D: Magnetic resonance imaging T1 indices of the brain as
biomarkers of inhaled manganese exposure. Crit Rev Toxicol.
52:358–370. 2022.PubMed/NCBI View Article : Google Scholar
|
41
|
Wishart DS: Computational approaches to
metabolomics. Methods Mol Biol. 593:283–313. 2010.PubMed/NCBI View Article : Google Scholar
|
42
|
Baker MG, Simpson CD, Lin YS, Shireman LM
and Seixas N: The Use of Metabolomics to Identify Biological
Signatures of Manganese Exposure. Ann Work Expo Health. 61:406–415.
2017.PubMed/NCBI View Article : Google Scholar
|
43
|
Carter KA, Simpson CD, Raftery D and Baker
MG: Short report: Using targeted urine metabolomics to distinguish
between manganese exposed and unexposed workers in a small
occupational cohort. Front Public Health. 9(666787)2021.PubMed/NCBI View Article : Google Scholar
|
44
|
Baker MG, Lin YS, Simpson CD, Shireman LM,
Searles Nielsen S, Racette BA and Seixas N: The reproducibility of
urinary ions in manganese exposed workers. J Trace Elem Med Biol.
51:204–211. 2019.PubMed/NCBI View Article : Google Scholar
|
45
|
Baker MG, Stover B, Simpson CD, Sheppard L
and Seixas NS: Using exposure windows to explore an elusive
biomarker: Blood manganese. Int Arch Occup Environ Health.
89:679–687. 2016.PubMed/NCBI View Article : Google Scholar
|
46
|
WHO: Manganese. Environmental Health
Criteria 17. World Health Organization, 1981.
|
47
|
Zoni S, Albini E and Lucchini R:
Neuropsychological testing for the assessment of manganese
neurotoxicity: A review and a proposal. Am J Ind Med. 50:812–830.
2007.PubMed/NCBI View Article : Google Scholar
|
48
|
Ruhf RC: Control of manganese dust and
fume exposures at a ferromanganese production and processing
facility. J Occup Med. 20:626–628. 1978.PubMed/NCBI View Article : Google Scholar
|
49
|
Rodier J: Manganese poisoning in Moroccan
miners. Br J Ind Med. 12:21–35. 1955.PubMed/NCBI View Article : Google Scholar
|
50
|
DeWitt MR, Chen P and Aschner M: Manganese
efflux in Parkinsonism: Insights from newly characterized SLC30A10
mutations. Biochem Biophys Res Commun. 432:1–4. 2013.PubMed/NCBI View Article : Google Scholar
|
51
|
Quadri M, Kamate M, Sharma S, Olgiati S,
Graafland J, Breedveld GJ, Kori I, Hattiholi V, Jain P, Aneja S, et
al: Manganese transport disorder: Novel SLC30A10 mutations and
early phenotypes. Mov Disord. 30:996–1001. 2015.PubMed/NCBI View Article : Google Scholar
|
52
|
Asser A, Hikima A, Raki M, Bergström K,
Rose S, Juurmaa J, Krispin V, Muldmaa M, Lilles S, Rätsep H, et al:
Subacute administration of both methcathinone and manganese causes
basal ganglia damage in mice resembling that in methcathinone
abusers. J Neural Transm (Vienna). 127:707–714. 2020.PubMed/NCBI View Article : Google Scholar
|
53
|
Sikk K and Taba P: Methcathinone ‘Kitchen
Chemistry’ and permanent neurological damage. Int Rev Neurobiol.
120:257–271. 2015.PubMed/NCBI View Article : Google Scholar
|
54
|
Marti-Sanchez L, Ortigoza-Escobar JD,
Darling A, Villaronga M, Baide H, Molero-Luis M, Batllori M,
Vanegas MI, Muchart J, Aquino L, et al: Hypermanganesemia due to
mutations in SLC39A14: Further insights into Mn deposition in the
central nervous system. Orphanet J Rare Dis. 13(28)2018.PubMed/NCBI View Article : Google Scholar
|
55
|
Peres TV, Schettinger MR, Chen P, Carvalho
F, Avila DS, Bowman AB and Aschner M: Manganese-induced
neurotoxicity: A review of its behavioral consequences and
neuroprotective strategies. BMC Pharmacol Toxicol.
17(57)2016.PubMed/NCBI View Article : Google Scholar
|
56
|
Lee EY, Flynn MR, Du G, Lewis MM, Fry R,
Herring AH, Van Buren E, Van Buren S, Smeester L, Kong L, et al: T1
Relaxation Rate (R1) Indicates Nonlinear Mn accumulation in brain
tissue of welders with low-level exposure. Toxicol Sci.
146:281–289. 2015.PubMed/NCBI View Article : Google Scholar
|
57
|
Criswell SR, Nielsen SS, Warden MN, Flores
HP, Lenox-Krug J, Racette S, Sheppard L, Checkoway H and Racette
BA: MRI Signal Intensity and Parkinsonism in Manganese-Exposed
Workers. J Occup Environ Med. 61:641–645. 2019.PubMed/NCBI View Article : Google Scholar
|
58
|
Fechter LD, Johnson DL and Lynch RA: The
relationship of particle size to olfactory nerve uptake of a
non-soluble form of manganese into brain. Neurotoxicology.
23:177–183. 2002.PubMed/NCBI View Article : Google Scholar
|
59
|
Schraufnagel DE: The health effects of
ultrafine particles. Exp Mol Med. 52:311–317. 2020.PubMed/NCBI View Article : Google Scholar
|
60
|
Hobson A, Seixas N, Sterling D and Racette
BA: Estimation of particulate mass and manganese exposure levels
among welders. Ann Occup Hyg. 55:113–125. 2011.PubMed/NCBI View Article : Google Scholar
|
61
|
Kim Y, Bowler RM, Abdelouahab N, Harris M,
Gocheva V and Roels HA: Motor function in adults of an Ohio
community with environmental manganese exposure. Neurotoxicology.
32:606–614. 2011.PubMed/NCBI View Article : Google Scholar
|
62
|
Pavilonis BT, Lioy PJ, Guazzetti S,
Bostick BC, Donna F, Peli M, Zimmerman NJ, Bertrand P, Lucas E,
Smith DR, et al: Manganese concentrations in soil and settled dust
in an area with historic ferroalloy production. J Expo Sci Environ
Epidemiol. 25:443–450. 2015.PubMed/NCBI View Article : Google Scholar
|
63
|
Rodichkin AN, Edler MK, McGlothan JL and
Guilarte TR: Behavioral and neurochemical studies of inherited
manganese-induced dystonia-parkinsonism in Slc39a14-knockout mice.
Neurobiol Dis. 158(105467)2021.PubMed/NCBI View Article : Google Scholar
|
64
|
Stefani A, Pierantozzi M, Olivola E,
Galati S, Cerroni R, D'Angelo V, Hainsworth AH, Saviozzi V, Fedele
E and Liguori C: Homovanillic acid in CSF of mild stage Parkinson's
disease patients correlates with motor impairment. Neurochem Int.
105:58–63. 2017.PubMed/NCBI View Article : Google Scholar
|
65
|
Ai LB, Chua LH, New AL, Lee BL, Liu YM,
Chia SE and Ong CN: Urinary homovanillic acid (HVA) and
vanillymandelic acid (VMA) in workers exposed to manganese dust.
Biol Trace Elem Res. 64:89–99. 1998.PubMed/NCBI View Article : Google Scholar
|
66
|
Guilarte TR and Gonzales KK:
Manganese-Induced parkinsonism is not idiopathic Parkinson's
disease: Environmental and genetic evidence. Toxicol Sci.
146:204–212. 2015.PubMed/NCBI View Article : Google Scholar
|
67
|
Vermeulen R: The use of high-resolution
metabolomics in occupational exposure and health research. Ann Work
Expo Health. 61:395–397. 2017.PubMed/NCBI View Article : Google Scholar
|
68
|
Chen P, Totten M, Zhang Z, Bucinca H,
Erikson K, Santamaría A, Bowman AB and Aschner M: Iron and
manganese-related CNS toxicity: Mechanisms, diagnosis and
treatment. Expert Rev Neurother. 19:243–260. 2019.PubMed/NCBI View Article : Google Scholar
|
69
|
Roth JA and Garrick MD: Iron interactions
and other biological reactions mediating the physiological and
toxic actions of manganese. Biochem Pharmacol. 66:1–13.
2003.PubMed/NCBI View Article : Google Scholar
|
70
|
Ye Q, Park JE, Gugnani K, Betharia S,
Pino-Figueroa A and Kim J: Influence of iron metabolism on
manganese transport and toxicity. Metallomics. 9:1028–1046.
2017.PubMed/NCBI View Article : Google Scholar
|