Adrenergic receptor system as a pharmacological target in the treatment of epilepsy (Review)
- Authors:
- Ercan Ozdemir
-
Affiliations: Department of Physiology, Faculty of Medicine, Sivas Cumhuriyet University, 58140 Sivas, Turkey - Published online on: February 27, 2024 https://doi.org/10.3892/mi.2024.144
- Article Number: 20
-
Copyright : © Ozdemir . This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY 4.0].
This article is mentioned in:
Abstract
Fisher RS, van Emde Boas W, Blume W, Elger C, Genton P, Lee P and Engel J Jr: Epileptic seizures and epilepsy: Definitions proposed by the international league against epilepsy (ILAE) and the international bureau for epilepsy (IBE). Epilepsia. 46:470–472. 2005.PubMed/NCBI View Article : Google Scholar | |
McHugh JC and Delanty N: Epidemiology and classification of epilepsy: Gender comparisons. Int Rev Neurobiol. 83:11–26. 2008.PubMed/NCBI View Article : Google Scholar | |
Weltha L, Reemmer J and Boison D: The role of adenosine in epilepsy. Brain Res Bull. 151:46–54. 2019.PubMed/NCBI View Article : Google Scholar | |
Berkovic SF and Scheffer IE: Febrile seizures: Genetics and relationship to other epilepsy syndromes. Curr Opin Neurol. 11:129–134. 1998.PubMed/NCBI View Article : Google Scholar | |
Bence AK, Worthen DR, Stables JP and Crooks PA: An in vivo evaluation of the antiseizure activity and acute neurotoxicity of agmatine. Pharmacol Biochem Behav. 74:771–775. 2003.PubMed/NCBI View Article : Google Scholar | |
DiNuzzo M, Mangia S, Maraviglia B and Giove F: Physiological bases of the K+ and the glutamate/GABA hypotheses of epilepsy. Epilepsy Res. 108:995–1012. 2014.PubMed/NCBI View Article : Google Scholar | |
Sahin B, Ozdemir E, Gumus E, Ergul M and Taskiran AS: The 5-HT7 receptor antagonist SB-269970 alleviates seizure activity and downregulates hippocampal c-Fos expression in pentylenetetrazole-induced kindled rats. Neurol Res. 44:786–796. 2022.PubMed/NCBI View Article : Google Scholar | |
Akyuz E, Doganyigit Z, Paudel YN, Koklu B, Kaymak E, Villa C, Arulsamy A, Shaikh MF and Devinsky O: Immunoreactivity of muscarinic acetylcholine M2 and serotonin 5-HT2B receptors, norepinephrine transporter and Kir channels in a model of epilepsy. Life (Basel). 11(276)2021.PubMed/NCBI View Article : Google Scholar | |
Chen C, Zhu T, Gong L, Hu Z, Wei H, Fan J, Lin D, Wang X, Xu J, Dong X, et al: Trpm2 deficiency in microglia attenuates neuroinflammation during epileptogenesis by upregulating autophagy via the AMPK/mTOR pathway. Neurobiol Dis. 186(106273)2023.PubMed/NCBI View Article : Google Scholar | |
Kuang X, Chen S and Ye Q: The role of histone deacetylases in NLRP3 inflammasomes-mediated epilepsy. Curr Mol Med 2023: doi: 10.2174/1566524023666230731095431, 2023. | |
Rana A and Musto AE: The role of inflammation in the development of epilepsy. J Neuroinflammation. 15(144)2018.PubMed/NCBI View Article : Google Scholar | |
Gunes H, Ozdemir E and Arslan G: Coenzyme Q10 increases absence seizures in WAG/Rij rats: The role of the nitric oxide pathway. Epilepsy Res. 154:69–73. 2019.PubMed/NCBI View Article : Google Scholar | |
Taskıran AS, Ozdemir E, Gumus E and Ergul M: The effects of salmon calcitonin on epileptic seizures, epileptogenesis, and postseizure hippocampal neuronal damage in pentylenetetrazole-induced epilepsy model in rats. Epilepsy Behav. 13(107501)2020.PubMed/NCBI View Article : Google Scholar | |
Strac DS, Pivac N, Smolders IJ, Fogel WA, Deurwaerdere PD and Giovanni GD: Monoaminergic mechanisms in epilepsy may offer innovative therapeutic opportunity for monoaminergic multi-target drugs. Front Neurosci. 10(492)2016.PubMed/NCBI View Article : Google Scholar | |
Giorgi FS, Pizzanelli C, Biagioni F, Murri L and Fornai F: The role of norepinephrine in epilepsy: From the bench to the bedside. Neurosci Biobehav Rev. 28:507–524. 2004.PubMed/NCBI View Article : Google Scholar | |
Foote SL and Berridge CW: New developments and future directions in understanding locus coeruleus-Norepinephrine (LC-NE) function. Brain Res. 1709:81–84. 2019.PubMed/NCBI View Article : Google Scholar | |
Amaral-Silva L and Santin JM: Molecular profiling of CO2/pH-sensitive neurons in the locus coeruleus of bullfrogs reveals overlapping noradrenergic and glutamatergic cell identity. Comp Biochem Physiol A Mol Integr Physiol. 283(111453)2023.PubMed/NCBI View Article : Google Scholar | |
Clough RW, Browning RA, Maring ML, Statnick MA, Wang C and Jobe PC: Effects of intraventricular locus coeruleus transplants on seizure severity in genetically epilepsy-prone rats following depletion of brain norepinephrine. J Neural Transplant Plast. 5:65–79. 1994.PubMed/NCBI View Article : Google Scholar | |
Larsen LE, Caestecker S, Stevens L, van Mierlo P, Carrette E, Boon P, Vonck K and Raedt R: Hippocampal seizures differentially modulate locus coeruleus activity and result in consistent time-locked release of noradrenaline in rat hippocampus. Neurobiol Dis. 189(106355)2023.PubMed/NCBI View Article : Google Scholar | |
Brawek B, Löffler M, Dooley DJ, Weyerbrock A and Feuerstein TJ: Differential modulation of K(+)-evoked (3)H-neurotransmitter release from human neocortex by gabapentin and pregabalin. Naunyn Schmiedebergs Arch Pharmacol. 376:301–307. 2008.PubMed/NCBI View Article : Google Scholar | |
Choi TY, Kwon JE, Durrance ES, Jo SH, Choi SY and Kim KT: Melatonin inhibits voltage-sensitive Ca(2+) channel-mediated neurotransmitter release. Brain Res. 4:34–42. 2014.PubMed/NCBI View Article : Google Scholar | |
Briere R, Sherwin AL, Robitaille Y, Olivier A, Quesney LF and Reader TA: Alpha-1 adrenoceptors are decreased in human epileptic foci. Ann Neurol. 19:26–30. 1986.PubMed/NCBI View Article : Google Scholar | |
Nicoletti F, Barbaccia ML, Iadarola MJ, Pozzi O and Laird HE II: Abnormality ofalpha 1-adrenergic receptors in the frontal cortex of epileptic rats. J Neurochem. 46:270–273. 1986.PubMed/NCBI View Article : Google Scholar | |
McIntyre DC and Edson N: Effect of norepinephrine depletion on dorsal hippocampus kindling in rats. Exp Neuron. 77:700–704. 1982.PubMed/NCBI View Article : Google Scholar | |
Kokaia M, Bengzon J, Kalen P and Lindvall O: Noradrenergic mechanisms in hippocampal kindling with rapidly recurring seizures. Brain Res. 491:398–402. 1989.PubMed/NCBI View Article : Google Scholar | |
Dailey JW and Naritoku DK: Antidepressants and seizures: Clinical anecdotes overshadow neuroscience. Biochem Pharmacol. 52:1323–1329. 1996.PubMed/NCBI View Article : Google Scholar | |
Fitzgerald PJ: Is elevated norepinephrine an etiological factor in some cases of epilepsy? Seizure. 19:311–318. 2010.PubMed/NCBI View Article : Google Scholar | |
Chen J, Liang H, Miao M, Su X, Yang F, Thomsen RW, Yuan W and Li J: In utero beta-2-adrenergic agonists exposure and risk of epilepsy: A Danish nationwide population-based cohort study. Pharmacoepidemiol Drug Saf. 27:1200–1208. 2018.PubMed/NCBI View Article : Google Scholar | |
Felippotti TT, dos Reis Ferreira CM, de Freitas RL, de Oliveira RC, de Oliveira R, Paschoalin-Maurin T and Coimbra NC: Paradoxical effect of noradrenaline-mediated neurotransmission in the antinociceptive phenomenon that accompanies tonic-clonic seizures: role of locus coeruleus neurons and α(2)- and β-noradrenergic receptors. Epilepsy Behav. 22:165–77. 2011.PubMed/NCBI View Article : Google Scholar | |
Hillman KL, Lei S, Doze VA and Porter JE: Alpha-1A adrenergic receptor activation increases inhibitory tone in CA1 hippocampus. Epilepsy Res. 84:97–109. 2009.PubMed/NCBI View Article : Google Scholar | |
Pizzanelli C, Lazzeri G, Fulceri F, Giorgi FS, Pasquali L, Cifelli G, Murri L and Fornai F: Lack of alpha 1b-adrenergic receptor protects against epileptic seizures. Epilepsia. 50 (Suppl 1):S59–S64. 2009.PubMed/NCBI View Article : Google Scholar | |
Shafaroodi H, Moezi L, Bahremand A and Dehpour AR: The role of α2-adrenoceptors in the anti-convulsant effects of cannabinoids on pentylenetetrazole-induced seizure threshold in mice. Eur J Pharmacol. 714:1–6. 2013.PubMed/NCBI View Article : Google Scholar | |
Shouse MN, Scordato JC, Farber PR and de Lanerolle N: The alpha2 adrenoreceptor agonist clonidine suppresses evoked and spontaneous seizures, whereas the alpha2 adrenoreceptor antagonist idazoxan promotes seizures in amygdala-kindled kittens. Brain Res. 1137:58–68. 2007.PubMed/NCBI View Article : Google Scholar | |
Fletcher A and Forster EA: A proconvulsant action of selective alpha 2-adrenoceptor antagonists. Eur J Pharmacol. 151:27–34. 1988.PubMed/NCBI View Article : Google Scholar | |
Payandemehr B, Bahremand A, Ebrahimi A, Nasrabady SE, Rahimian R, Bahremand T, Sharifzadeh M and Dehpour AR: Protective effects of lithium chloride on seizure susceptibility: Involvement of α2-adrenoceptor. Pharmacol Biochem Behav. 133:37–42. 2015.PubMed/NCBI View Article : Google Scholar | |
Moezi L, Mansoori E, Niknahad H and Shafaroodi H: The role of alpha-2 adrenoceptors in the anticonvulsant effects of adenosine on pentylenetetrazole-induced seizure threshold in mice. Pharmacol Biochem Behav. 126:36–42. 2014.PubMed/NCBI View Article : Google Scholar | |
Abraham PA, Xing G, Zhang L, Yu EZ, Post R, Gamble EH and Li H: beta1- and beta2-adrenoceptor induced synaptic facilitation in rat basolateral amygdala. Brain Res. 1209:65–73. 2008.PubMed/NCBI View Article : Google Scholar | |
McIntyre DC and Roberts DCS: Long-term reduction in beta-adrenergic receptor binding after amygdala kindling in rats. Exp Neurol. 82:17–24. 1983.PubMed/NCBI View Article : Google Scholar | |
Philipp M, Brede M and Hein L: Physiological significance of alpha(2)-adrenergic receptor subtype diversity: One receptor is not enough. Am J Physiol Regul Integr Comp Physiol. 283:R287–R295. 2002.PubMed/NCBI View Article : Google Scholar | |
Wu Y, Zeng L and Zhao S: Ligands of adrenergic receptors: A structural point of view. Biomolecules. 11(936)2021.PubMed/NCBI View Article : Google Scholar | |
Perez DM: α1-Adrenergic receptors in neurotransmission, synaptic plasticity, and cognition. Front Pharmacol. 11(581098)2020.PubMed/NCBI View Article : Google Scholar | |
Cavalli A, Lattion AL, Hummler E, Nenniger M, Pedrazzini T, Aubert JF, Michel MC, Yang M, Lembo G, Vecchione C, et al: Decreased blood pressure response in mice deficient of the alpha1b adrenergic receptor. Proc Natl Acad Sci USA. 94:11589–11594. 1997.PubMed/NCBI View Article : Google Scholar | |
Graham RM, Perez DM, Hwa J and Piascik MT: alpha1-adrenergic receptor subtypes: Molecular structure, function, and signaling. Circ Res. 78:737–749. 1996.PubMed/NCBI View Article : Google Scholar | |
Perez DM and Doze VA: Cardiac and neuroprotection regulated by α(1)-adrenergic receptor Subtypes. J Recept Signal Transduct Res. 31:98–110. 2011.PubMed/NCBI View Article : Google Scholar | |
Papay R, Gaivin R, Jha A, McCune DF, McGrath JC, Rodrigo MC, Simpson PC, Doze VA and Perez DM: Localization of the mouse alpha1A-adrenergic receptor (AR) in the brain: Alpha1aar is expressed in neurons, GABAergic interneurons, and NG2 oligodendrocyte progenitors. J Comp Neurol. 497:209–222. 2006.PubMed/NCBI View Article : Google Scholar | |
Gupta MK, Papay RS, Jurgens CW, Gaivin RJ, Shi T, Doze VA and Perez DM: Alpha1-Adrenergic receptors regulate neurogenesis and gliogenesis. Mol Pharmacol. 76:314–326. 2009.PubMed/NCBI View Article : Google Scholar | |
Trendelenburg AU, Sutej I, Wahl CA, Molderings GJ, Rump LC and Starke K: A re-investigation of questionable subclassifications of presynaptic α2-autoreceptors: Rat vena cava, rat atria, human kidney and guinea-pig urethra. Naunyn Schmiedebergs Arch Pharmacol. 356:721–737. 1997.PubMed/NCBI View Article : Google Scholar | |
Rump CL, Bohmann C, Schaible U, Schöllhorn J and Limberger N: Alpha 2C-adrenoceptor-modulated release of noradrenaline in human right atrium. Br J Pharmacol. 116:2617–2624. 1995.PubMed/NCBI View Article : Google Scholar | |
Brodde O: Beta-1 and beta-2 adrenoceptor polymorphisms: Functional importance, impact on cardiovascular diseases and drug responses. Pharmacol Ther. 117:1–29. 2008.PubMed/NCBI View Article : Google Scholar | |
Leineweber K and Heusch G: Beta 1- and beta 2-adrenoceptor polymorphisms and cardiovascular diseases. Br J Pharmacol. 158:61–69. 2009.PubMed/NCBI View Article : Google Scholar | |
Kume H, Nishiyama O, Isoya T, Higashimoto Y, Tohda Y and Noda Y: Involvement of allosteric effect and KCa channels in crosstalk between β2-adrenergic and muscarinic M2 receptors in airway smooth muscle. Int J Mol Sci. 19(1999)2018.PubMed/NCBI View Article : Google Scholar | |
Sawa M and Harada H: Recent developments in the design of orally bioavailable beta3-adrenergic receptor agonists. Curr Med Chem. 13:25–37. 2006.PubMed/NCBI | |
Ferrer-Lorente R, Cabot C, Fernández-López JA and Alemany M: Combined effects of oleoyl-estrone and a β3-adrenergic agonist (CL316,243) on lipid stores of diet-induced overweight male Wistar rats. Life Sci. 77:2051–2058. 2005.PubMed/NCBI View Article : Google Scholar | |
Gundlach AL, Burazin TC, Jenkins TA and Berkovic SF: Spatiotemporal alterations of central alpha 1-adrenergic receptor binding sites following amygdaloid kindling seizures in the rat: Autoradiographic studies using (3H)prazosin. Brain Res. 672:214–227. 1995.PubMed/NCBI View Article : Google Scholar | |
Jazrawi SP and Horton RW: Brain adrenoceptor binding sites in mice susceptible (DBA/2J) and resistant (C57 Bl/6) to audiogenic seizures. J Neurochem. 47:173–177. 1986.PubMed/NCBI View Article : Google Scholar | |
Kulik A, Haentzsch A, Lückermann M, Reichelt W and Ballanyi K: Neuron-glia signaling via alpha(1) adrenoceptor-mediated Ca(2+) release in Bergmann glialcells in situ. J Neurosci. 19:8401–8408. 1999.PubMed/NCBI View Article : Google Scholar | |
Terakado M: Adrenergic regulation of GABA release from presynaptic terminals in rat cerebral cortex. J Oral Sci. 56:49–57. 2014.PubMed/NCBI View Article : Google Scholar | |
Rutecki PA: Noradrenergic modulation of epileptiform activity in the hippocampus. Epilepsy Res. 20:125–136. 1995.PubMed/NCBI View Article : Google Scholar | |
Jurgens CWD, Knudson CA, Carr PA, Perez DM and Doze VA: a1 Adrenergic receptor regulation of interneuron function. FASEB J. 23 (Suppl 946)(4)2009. | |
Knudson CA, Carr PA, Perez DM and Doze VA: Alpha-1A adrenergic receptor overexpression protects hippocampal interneurons. FASEB J. 21(A1209)2007. | |
Zuscik MJ, Sands S, Ross SA, Waugh DJ, Gaivin RJ, Morilak D and Perez DM: Overexpression of the alpha1B-adrenergic receptor causes apoptotic neurodegeneration: Multiple system atrophy. Nat Med. 6:1388–1394. 2000.PubMed/NCBI View Article : Google Scholar | |
Kruse SW, Dayton KG, Purnell BS, Rosner JI and Buchanan GF: Effect of monoamine reuptake inhibition and α1 blockade on respiratory arrest and death following electroshock-induced seizures in mice. Epilepsia. 60:495–507. 2019.PubMed/NCBI View Article : Google Scholar | |
Kunieda T, Zuscik MJ, Boongird A, Perez DM, Lüders HO and Najm IM: Systemic overexpression of the alpha 1B-adrenergic receptor in mice: An animal model of epilepsy. Epilepsia. 43:1324–1329. 2002.PubMed/NCBI View Article : Google Scholar | |
Chen CR, Qu WM, Qiu MH, Xu XH, Yao MH, Urade Y and Huang ZL: Modafinil exerts a dose-dependent antiepileptic effect mediated by adrenergic alpha1 and histaminergic H1 receptors in mice. Neuropharmacology. 53:534–541. 2007.PubMed/NCBI View Article : Google Scholar | |
Niitani K, Ito S, Wada S, Izumi S, Nishitani N, Deyama S and Kaneda K: Noradrenergic stimulation of α1 adrenoceptors in the medial prefrontal cortex mediates acute stress-induced facilitation of seizures in mice. Sci Rep. 19(8089)2023.PubMed/NCBI View Article : Google Scholar | |
Ciltas AC, Ozdemir E, Gumus E, Taskiran AS, Gunes H and Arslan G: The anticonvulsant effects of alpha-2 adrenoceptor agonist dexmedetomidine on pentylenetetrazole-induced seizures in rats. Neurochem Res. 47:305–314. 2022.PubMed/NCBI View Article : Google Scholar | |
Nissinen J, Andrade P, Natunen T, Hiltunen M, Malm T, Kanninen K, Soares JI, Shatillo O, Sallinen J, Ndode-Ekane XE and Pitkänen A: Disease-modifying effect of atipamezole in a model of post-traumatic epilepsy. Epilepsy Res. 136:18–34. 2017.PubMed/NCBI View Article : Google Scholar | |
Jurgens CW, Hammad HM, Lichter JA, Boese SJ, Nelson BW, Goldenstein BL, Davis KL, Xu K, Hillman KL, Porter JE and Doze VA: Alpha2A adrenergic receptor activation inhibits epileptiform activity in the rat hippocampal CA3 region. Mol Pharmacol. 71:1572–1581. 2007.PubMed/NCBI View Article : Google Scholar | |
Szot P, Lester M, Laughlin ML, Palmiter RD, Liles LC and Weinshenker D: The anticonvulsant and proconvulsant effects of alpha2-adrenoreceptor agonists are mediated by distinct populations of alpha2A-adrenoreceptors. Neuroscience. 126:795–803. 2004.PubMed/NCBI View Article : Google Scholar | |
Yavuz M, Aydın B, Çarçak N, Akman Ö, Yananlı HR and Onat F: Atipamezole, a specific α2A antagonist, suppresses spike-and-wave discharges and alters Ca2+/calmodulin-dependent protein kinase II in the thalamus of genetic absence epilepsy rats. Epilepsia. 61:2825–2835. 2020.PubMed/NCBI View Article : Google Scholar | |
Ferraro L, Tanganelli S, Calo G, Antonelli T, Fabrizi A, Acciarri N, Bianchi C, Beani L and Simonato M: Noradrenergic modulation of gamma-aminobutyric acid outflow from the human cerebral cortex. Brain Res. 629:103–108. 1993.PubMed/NCBI View Article : Google Scholar | |
Louis WJ, Papanicolaou J, Summers RJ and Vajda FJ: Role of central beta-adrenoceptors in the control of pentylenetetrazol-induced convulsions in rats. Br J Pharmacol. 75:441–446. 1982.PubMed/NCBI View Article : Google Scholar | |
Nakamura T, Oda Y, Takahashi R, Tanaka K, Hase I and Asada A: Propranolol increases the threshold for lidocaine-induced convulsions in awake rats: A direct effect on the brain. Anesth Analg. 106:1450–1455. 2008.PubMed/NCBI View Article : Google Scholar | |
Santana N and Artigas F: Laminar and cellular distribution of monoamine receptors in rat medial prefrontal cortex. Front Neuroanat. 11:1–13. 2017.PubMed/NCBI View Article : Google Scholar | |
Luo F, Tang H and Cheng ZY: Stimulation of α1-adrenoceptors facilitates GABAergic transmission onto pyramidal neurons in the medial prefrontal cortex. Neuroscience. 300:63–74. 2015.PubMed/NCBI View Article : Google Scholar | |
Hillman KL, Knudson CA, Carr PA, Doze VA and Porter JE: Adrenergic receptor characterization of CA1 hippocampal neurons using real time single cell RT-PCR. Brain Res Mol Brain Res. 139:267–276. 2005.PubMed/NCBI View Article : Google Scholar | |
Sapa J, Zygmunt M, Kulig K, Malawska B, Dudek M, Filipek B, Bednarski M, Kusak A and Nowak G: Evaluation of anticonvulsant activity of novel pyrrolidin-2-one derivatives. Pharmacol Rep. 66:708–711. 2014.PubMed/NCBI View Article : Google Scholar | |
Clinckers R, Zgavc T, Vermoesen K, Meurs A, Michotte Y and Smolders I: Pharmacological and neurochemical characterization of the involvement of hippocampal adrenoreceptor subtypes in the modulation of acute limbic seizures. J Neurochem. 115:1595–1607. 2010.PubMed/NCBI View Article : Google Scholar | |
Gellman RL, Kallianos JA and McNamara JO: Alpha-2 receptors mediateendogenous noradrenergic suppression of kindling development. J Pharmacol Exp Ther. 241:891–898. 1987.PubMed/NCBI | |
Amabeoku GJ: The involvement of noradrenaline, 5-hydroxytryptamine and acetylcholine in imipramine-induced seizures in mice. Experientia. 49:859–864. 1993.PubMed/NCBI View Article : Google Scholar | |
MacDonald E, Kobilka BK and Scheinin M: Gene targeting-homing in on alpha 2-adrenoceptor-subtype function. Trends Pharmacol Sci. 18:211–219. 1997.PubMed/NCBI View Article : Google Scholar | |
Weinshenker D, Szot P, Miller NS and Palmiter RD: Alpha1 and beta2 adrenoreceptor agonists inhibit pentylenetetrazole-induced seizures in mice lacking norepinephrine. J Pharmacol Exp Ther. 298:1042–1048. 2001.PubMed/NCBI | |
Xiao Z, Deng PY, Rojanathammanee L, Yang C, Grisanti L, Permpoonputtana K, Weinshenker D, Doze VA, Porter JE and Lei S: Noradrenergic depression of neuronal excitability in the entorhinal cortex via activation of TREK-2K+ channels. J Biol Chem. 284:10980–10991. 2009.PubMed/NCBI View Article : Google Scholar | |
Sitnikova E, Pupikina M and Rutskova E: Alpha2 adrenergic modulation of spike-wave epilepsy: Experimental study of pro-epileptic and sedative effects of dexmedetomidine. Int J Mol Sci. 24(9445)2023.PubMed/NCBI View Article : Google Scholar | |
Biggane JP, Xu K, Goldenstein BL, Davis KL, Luger EJ, Davis BA, Jurgens CWD, Perez DM, Porter JE and Doze VA: Pharmacological characterization of the α2A-adrenergic receptor inhibiting rat hippocampal CA3 epileptiform activity: Comparison of ligand efficacy and potency. J Recept Signal Transduct Res. 42:580–587. 2022.PubMed/NCBI View Article : Google Scholar | |
Ahmadirad N, Fathollahi Y, Janahmadi M, Ghasemi Z, Shojaei A, Rezaei M, Barkley V and Mirnajafi-Zadeh J: The role of α adrenergic receptors in mediating the inhibitory effect of electrical brain stimulation on epileptiform activity in rat hippocampal slices. Brain Res. 1765(147492)2021.PubMed/NCBI View Article : Google Scholar | |
Rezaei M, Ahmadirad N, Ghasemi Z, Shojaei A, Raoufy MR, Barkley V, Fathollahi Y and Mirnajafi-Zadeh J: Alpha adrenergic receptors have role in the inhibitory effect of electrical low frequency stimulation on epileptiform activity in rats. Int J Neurosci. 133:496–504. 2023.PubMed/NCBI View Article : Google Scholar | |
Wu HQ, Tullii M, Samanin R and Vezzani A: Norepinephrine modulates seizures induced by quinolinic acid in rats: Selective and distinct roles of alpha adrenoceptor subtypes. Eur J Pharmacol. 138:309–318. 1987.PubMed/NCBI View Article : Google Scholar | |
Eason MG, Kurose H, Holt BD, Raymond JR and Liggett SB: Simultaneous coupling of alpha 2-adrenergic receptors to two G-proteins with opposing effects. Subtype-selective coupling of alpha 2C10, alpha 2C4, and alpha 2C2 adrenergic receptors to Gi and Gs. J Biol Chem. 267:15795–15801. 1992.PubMed/NCBI | |
Atzori M, Cuevas-Olguin R, Esquivel-Rendon E, Garcia-Oscos F, Salgado-Delgado RC, Saderi N, Miranda-Morales M, Treviño M, Pineda JC and Salgado H: Locus ceruleus norepinephrine release: A central regulator of CNS spatio-temporal activation. Front Synaptic Neurosci. 8(25)2016.PubMed/NCBI View Article : Google Scholar | |
Świąder M, Zakrocka I, Świąder K, Zawadzki A, Łuszczki JJ, Czuczwar SJ and Munir D: Influence of salbutamol on the anticonvulsant potency of the antiepileptic drugs in the maximal electroshock-induced seizures in mice. Pharmacol Rep. 71:466–472. 2019.PubMed/NCBI View Article : Google Scholar | |
Gross RA and Ferrendelli JA: Relationships between norepinephrine and cyclic nucleotides in brain and seizure activity. Neuropharmacology. 21:655–661. 1982.PubMed/NCBI View Article : Google Scholar | |
Anlezark G, Horton R and Meldrum B: The anticonvulsant action of the (-)- and (+)-enantiomers of propranolol. J Pharm Pharmacol. 31:482–483. 1979.PubMed/NCBI View Article : Google Scholar | |
Levy A, Ngai SH, Finck AD, Kawashima K and Spector S: Disposition of propranolol isomers in mice. Eur J Pharmacol. 40:93–100. 1976.PubMed/NCBI View Article : Google Scholar | |
Fischer W: Anticonvulsant profile and mechanism of action of propranolol and its two enantiomers. Seizure. 11:285–302. 2002.PubMed/NCBI View Article : Google Scholar | |
Mueller AL and Dunwiddie TV: Anticonvulsant and proconvulsant actions of alpha- and beta-noradrenergic agonists on epileptiform activity in rat hippocampus in vitro. Epilepsia. 24:57–64. 1983.PubMed/NCBI View Article : Google Scholar | |
Lipski WJ and Grace AA: Activation and inhibition of neurons in the hippocampal ventral subiculum by norepinephrine and locus coeruleus stimulation. Neuropsychopharmacology. 38:285–292. 2013.PubMed/NCBI View Article : Google Scholar | |
Fassio A, Rossi F, Bonanno G and Raiteri M: GABA induces norepinephrine exocytosis from hippocampal noradrenergic axon terminals by a dual mechanism involving different voltage-sensitive calcium channels. J Neurosci Res. 57:324–331. 1999.PubMed/NCBI | |
Tully K, Li Y, Tsvetkov E and Bolshakov VY: Norepinephrine enables the induction of associative long-term potentiation at thalamo-amygdala synapses. Proc Natl Acad Sci USA. 104:14146–14150. 2007.PubMed/NCBI View Article : Google Scholar | |
Gellman RL and Aghajanian GK: Pyramidal cells in piriform cortex receive a convergence of inputs from monoamine activated GABAergic interneurons. Brain Res. 600:63–73. 1993.PubMed/NCBI View Article : Google Scholar | |
Bergles DE, Doze VA, Madison DV and Smith SJ: Excitatory actions of norepinephrine on multiple classes of hippocampal CA1 interneurons. J Neurosci. 16:572–585. 1996.PubMed/NCBI View Article : Google Scholar | |
Braga MF, Aroniadou-Anderjaska V, Manion ST, Hough CJ and Li H: Stress impairs alpha(1A) adrenoceptor-mediated noradrenergic facilitation of GABAergic transmission in the basolateral amygdala. Neuropsychopharmacology. 29:45–58. 2004.PubMed/NCBI View Article : Google Scholar | |
Prager EM, Bergstrom HC, Wynn GH and Braga MFM: The basolateral amygdala -γ aminobutyric system in health and disease. J Neurosci Res. 94:548–567. 2016.PubMed/NCBI View Article : Google Scholar | |
Dazzi L, Matzeu A and Biggio G: Role of ionotropic glutamate receptors in the regulation of hippocampal norepinephrine output in vivo. Brain Res. 1386:41–49. 2011.PubMed/NCBI View Article : Google Scholar | |
Stanton PK: Noradrenergic modulation of epileptiform bursting and synaptic plasticity in the dentate gyrus. Epilepsy Res. 7:135–150. 1992.PubMed/NCBI | |
Stanton PK, Jones RS, Mody I and Heinemann U: Epileptiform activity induced by lowering extracellular (Mg2+) in combined hippocampal-entorhinal cortex slices: Modulation by receptors for norepinephrine and N-methyl-D-aspartate. Epilepsy Res. 1:53–62. 1987.PubMed/NCBI View Article : Google Scholar | |
Paladini CA, Fiorillo CD, Morikawa H and Williams JT: Amphetamine selectively blocks inhibitory glutamate transmission in dopamine neurons. Nat Neurosci. 4:275–281. 2001.PubMed/NCBI View Article : Google Scholar |