1
|
Carvalho C, Santos RX, Cardoso S, Correia
S, Oliveira PJ, Santos MS and Moreira PI: Doxorubicin: The good the
bad and the ugly effect. Curr Med Chem. 16:3267–3285.
2009.PubMed/NCBI View Article : Google Scholar
|
2
|
Bristow MR, Mason JW, Billingham ME and
Daniels JR: Doxorubicin cardiomyopathy: Evaluation by
phonocardiography, endomyocardial biopsy, and cardiac
catheterization. Ann Intern Med. 88:168–175. 1978.PubMed/NCBI View Article : Google Scholar
|
3
|
Singal PK and Iliskovic N:
Doxorubicin-induced cardiomyopathy. N Engl J Med. 339:900–905.
1998.PubMed/NCBI View Article : Google Scholar
|
4
|
Swain SM, Whaley FS and Ewer MS:
Congestive heart failure in patients treated with doxorubicin: A
retrospective analysis of three trials. Cancer. 97:2869–2879.
2003.PubMed/NCBI View Article : Google Scholar
|
5
|
Curigliano G, Cardinale D, Dent S,
Criscitiello C, Aseyev O, Lenihan D and Cipolla CM: Cardiotoxicity
of anticancer treatments: Epidemiology, detection, and management.
CA Cancer J Clin. 66:309–325. 2016.PubMed/NCBI View Article : Google Scholar
|
6
|
Gianni L, Herman EH, Lipshultz SE, Minotti
G, Sarvazyan N and Sawyer DB: Anthracycline cardiotoxicity: From
bench to bedside. J Clin Oncol. 26:3777–3784. 2008.PubMed/NCBI View Article : Google Scholar
|
7
|
Salvatorelli E, Menna P, Chello M, Covino
E and Minotti G: Modeling human myocardium exposure to doxorubicin
defines the risk of heart failure from lowdose doxorubicin. J
Pharmacol Exp Ther. 362:263–270. 2017.PubMed/NCBI View Article : Google Scholar
|
8
|
Minotti G, Menna P, Salvatorelli E, Cairo
G and Gianni L: Anthracyclines: Molecular advances and
pharmacologic developments in antitumor activity and
cardiotoxicity. Pharmacol Rev. 56:185–229. 2004.PubMed/NCBI View Article : Google Scholar
|
9
|
Wallace KB: Adriamycin-induced
interference with cardiac mitochondrial calcium homeostasis.
Cardiovasc Toxicol. 7:101–107. 2007.PubMed/NCBI View Article : Google Scholar
|
10
|
Lebrecht D, Kokkori A, Ketelsen UP, Setzer
B and Walker UA: Tissue-specific mtDNA lesions and
radical-associated mitochondrial dysfunction in human hearts
exposed to doxorubicin. J Pathol. 207:436–444. 2005.PubMed/NCBI View Article : Google Scholar
|
11
|
Simůnek T, Stérba M, Popelová O, Adamcová
M, Hrdina R and Gersl V: Anthracycline-induced cardiotoxicity:
Overview of studies examining the roles of oxidative stress and
free cellular iron. Pharmacol Rep. 61:154–171. 2009.PubMed/NCBI View Article : Google Scholar
|
12
|
Herman EH, Mhatre RM, Lee IP and
Waravdekar VS: Prevention of the cardiotoxic effects of adriamycin
and daunomycin in the isolated dog heart. Proc Soc Exp Biol Med.
140:234–239. 1972.PubMed/NCBI View Article : Google Scholar
|
13
|
Hasinoff BB, Hellmann K, Herman EH and
Ferrans VJ: Chemical, biological and clinical aspects of
dexrazoxane and other bisdioxopiperazines. Curr Med Chem. 5:1–28.
1998.PubMed/NCBI
|
14
|
Tebbi CK, London WB, Friedman D, Villaluna
D, De Alarcon PA, Constine LS, Mendenhall NP, Sposto R, Chauvenet A
and Schwartz CL: Dexrazoxane-associated risk for acute myeloid
leukemia/myelodysplastic syndrome and other secondary malignancies
in pediatric Hodgkin's disease. J Clin Oncol. 25:493–500.
2007.PubMed/NCBI View Article : Google Scholar
|
15
|
Batanouny KH: Wild medicinal plants in
Egypt: An inventory to support conservation and sustainable use.
Acad of Scientific Research & Technology, 2001.
|
16
|
Lee JK, Jung JS, Park SH, Park SH, Sim YB,
Kim SM, Ha TS and Suh HW: Anti-inflammatory effect of visnagin in
lipopolysaccharide-stimulated BV-2 microglial cells. Arch Pharm
Res. 33:1843–1850. 2010.PubMed/NCBI View Article : Google Scholar
|
17
|
Bhagavathula AS, Al-Khatib AJ, Elnour AA,
Al Kalbani NM and Shehab A: Ammi Visnaga in treatment of
urolithiasis and hypertriglyceridemia. Pharmacognosy Res.
7:397–400. 2014.PubMed/NCBI View Article : Google Scholar
|
18
|
Khalil N, Bishr M, Desouky S and Salama O:
Ammi Visnaga L., a potential medicinal plant: A review.
Molecules. 25(301)2020.PubMed/NCBI View Article : Google Scholar
|
19
|
Pasari LP, Khurana A, Anchi P, Saifi MA,
Annaldas S and Godugu C: Visnagin attenuates acute pancreatitis via
Nrf2/NFκB pathway and abrogates associated multiple organ
dysfunction. Biomed Pharmacother. 112(108629)2019.PubMed/NCBI View Article : Google Scholar
|
20
|
Vuong JT, Stein-Merlob AF, Cheng RK and
Yang EH: Novel therapeutics for Anthracycline induced
cardiotoxicity. Front Cardiovasc Med. 9(863314)2022.PubMed/NCBI View Article : Google Scholar
|
21
|
Cantrell CL, Travaini ML, Bajsa-Hirschel
J, Svendsen LD, Reichley A, Sosa GM, Kim SJ, Tamang P, Meepagala K
and Duke SO: Synthesis, herbicidal activity, and structure-activity
relationships of O-Alkyl analogues of Khellin and Visnagin. J Agric
Food Chem. 71:14593–14603. 2023.PubMed/NCBI View Article : Google Scholar
|
22
|
Duarte J, Torres AI and Zarzuelo A:
Cardiovascular effects of visnagin on rats. Planta Med. 66:35–39.
2000.PubMed/NCBI View Article : Google Scholar
|
23
|
Xi L: Visnagin-a new protectant against
doxorubicin cardiotoxicity? Inhibition of mitochondrial malate
dehydrogenase 2 (MDH2) and beyond. Ann Transl Med.
4(65)2016.PubMed/NCBI View Article : Google Scholar
|
24
|
Huang CC, Monte A, Cook JM, Kabir MS and
Peterson KP: Zebrafish heart failure models for the evaluation of
chemical probes and drugs. Assay Drug Dev Technol. 11:561–572.
2013.PubMed/NCBI View Article : Google Scholar
|
25
|
Liu Y, Asnani A, Zou L, Bentley VL, Yu M,
Wang Y, Dellaire G, Sarkar KS, Dai M, Chen HH, et al: Visnagin
protects against doxorubicin-induced cardiomyopathy through
modulation of mitochondrial malate dehydrogenase. Sci Transl Med.
6(266ra170)2014.PubMed/NCBI View Article : Google Scholar
|
26
|
Asnani A, Zheng B, Liu Y, Wang Y, Chen HH,
Vohra A, Chi A, Cornella-Taracido I, Wang H, Johns DG, et al:
Highly potent visnagin derivatives inhibit Cyp1 and prevent
doxorubicin cardiotoxicity. JCI Insight. 3(e96753)2018.PubMed/NCBI View Article : Google Scholar
|
27
|
Nielsen TT, Støttrup NB, Løfgren B and
Bøtker HE: Metabolic fingerprint of ischaemic cardioprotection:
Importance of the malate-aspartate shuttle. Cardiovasc Res.
91:382–391. 2011.PubMed/NCBI View Article : Google Scholar
|
28
|
Lam PY, Kutchukian P, Anand R, Imbriglio
J, Andrews C, Padilla H, Vohra A, Lane S, Parker DL Jr, Taracido
IC, et al: Cyp1 inhibition prevents Doxorubicin-Induced
Cardiomyopathy in a Zebrafish heart-failure model. Chembiochem.
21:1905–1910. 2020.PubMed/NCBI View Article : Google Scholar
|
29
|
Arnold WR and Das A: An emerging pathway
of Doxorubicin cardiotoxicity mediated through CYP2J2.
Biochemistry. 57:2294–2296. 2018.PubMed/NCBI View Article : Google Scholar
|
30
|
Zhang Y, El-Sikhry H, Chaudhary KR, Batchu
SN, Shayeganpour A, Jukar TO, Bradbury JA, Graves JP, DeGraff LM,
Myers P, et al: Overexpression of CYP2J2 provides protection
against doxorubicin-induced cardiotoxicity. Am J Physiol Heart Circ
Physiol. 297:H37–H46. 2009.PubMed/NCBI View Article : Google Scholar
|
31
|
Altschul SF, Madden TL, Schäffer AA, Zhang
J, Zhang Z, Miller W and Lipman DJ: Gapped BLAST and PSI-BLAST: A
new generation of protein database search programs. Nucleic Acids
Res. 25:3389–3402. 1997.PubMed/NCBI View Article : Google Scholar
|
32
|
Warburg O: On respiratory impairment in
cancer cells. Science. 124:269–270. 1956.PubMed/NCBI
|
33
|
Abukhalil MH, Hussein OE, Aladaileh SH,
Althunibat OY, Al-Amarat W, Saghir SA, Alfwuaires MA, Algefare AI,
Alanazi KM, Al-Swailmi FK, et al: Visnagin prevents
isoproterenol-induced myocardial injury by attenuating oxidative
stress and inflammation and upregulating Nrf2 signaling in rats. J
Biochem Mol Toxicol. 35(e22906)2021.PubMed/NCBI View Article : Google Scholar
|
34
|
Fu HR, Li XS, Zhang YH, Feng BB and Pan
LH: Visnagin ameliorates myocardial ischemia/reperfusion injury
through the promotion of autophagy and the inhibition of apoptosis.
Eur J Histochem. 64(3131)2020.PubMed/NCBI View Article : Google Scholar
|
35
|
Haug KG, Weber B, Hochhaus G and
Butterweck V: Nonlinear pharmacokinetics of visnagin in rats after
intravenous bolus administration. Eur J Pharm Sci. 45:79–89.
2012.PubMed/NCBI View Article : Google Scholar
|
36
|
Jahan H, Choudhary MI, Shah Z, Khan KM and
Rahman AU: Derivatives of 6-nitrobenzimidazole inhibit
fructose-mediated protein glycation and intracellular reactive
oxygen species production. Med Chem. 13:577–584. 2017.PubMed/NCBI View Article : Google Scholar
|
37
|
Aydogmus-Ozturk F, Jahan H, Beyazit N,
Gunaydin K and Choudhary MI: The anticancer activity of visnagin,
isolated from Ammi visnaga L., against the human malignant melanoma
cell lines, HT 144. Mol Biol Rep. 46:1709–1714. 2019.PubMed/NCBI View Article : Google Scholar
|
38
|
Vrzal R, Frauenstein K, Proksch P, Abel J,
Dvorak Z and Haarmann-Stemmann T: Khellin and visnagin
differentially modulate AHR signaling and downstream CYP1A activity
in human liver cells. PLoS One. 8(e74917)2013.PubMed/NCBI View Article : Google Scholar
|