1
|
Ostrom QT, Gittleman H, Liao P,
Vecchione-Koval T, Wolinsky Y, Kruchko C and Barnholtz-Sloan JS:
CBTRUS statistical report: Primary brain and other central nervous
system tumors diagnosed in the United States in 2010-2014. Neuro
Oncol. 19 (suppl_5):v1–v88. 2017.PubMed/NCBI View Article : Google Scholar
|
2
|
Ostrom QT, Bauchet L, Davis FG, Deltour I,
Fisher JL, Langer CE, Pekmezci M, Schwartzbaum JA, Turner MC, Walsh
KM, et al: Response to ‘the epidemiology of glioma in adults: A
‘state of the science’ review’. Neuro Oncol. 17:624–626. 2018.
|
3
|
Ostrom QT, Gittleman H, Stetson L, Virk SM
and Barnholtz-Sloan JS: Epidemiology of gliomas. Cancer Treat Res.
163:1–14. 2015.PubMed/NCBI View Article : Google Scholar
|
4
|
Ostrom QT, Cote DJ, Ascha M, Kruchko C and
Barnholtz-Sloan JS: Adult glioma incidence and survival by race or
ethnicity in the United States from 2000 to 2014. JAMA Oncol.
4:1254–1262. 2018.PubMed/NCBI View Article : Google Scholar
|
5
|
Cho HH, Lee SH, Kim J and Park H:
Classification of the glioma grading using radiomics analysis.
PeerJ. 6(e5982)2018.PubMed/NCBI View Article : Google Scholar
|
6
|
Louis DN, Perry A, Reifenberger G, von
Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD,
Kleihues P and Ellison DW: The 2016 world health organization
classification of tumors of the central nervous system: A summary.
Acta Neuropathol. 131:803–820. 2016.PubMed/NCBI View Article : Google Scholar
|
7
|
Claus EB, Walsh KM, Wiencke JK, Molinaro
AM, Wiemels JL, Schildkraut JM, Bondy ML, Berger M, Jenkins R and
Wrensch M: Survival and low-grade glioma: The emergence of genetic
information. Neurosurg Focus. 38(E6)2015.PubMed/NCBI View Article : Google Scholar
|
8
|
Fisher JP and Adamson DC: Current
FDA-approved therapies for high-grade malignant gliomas.
Biomedicines. 9(324)2021.PubMed/NCBI View Article : Google Scholar
|
9
|
WHO. (2022, February 15). Central nervous
system tumours: Who classification of tumours (5th ed.). WHO.
http://books.google.ie/books?id=JXjDzgEACAAJ&dq=ISBN-13+978-92-832-4508-7&hl=&cd=1&source=gbs_api.
|
10
|
Al-Saadi TD and Diaz RJ: (2023).
Noncanonical (Non-R132H) IDH-mutated gliomas. Glioblastoma-current
evidence. https://doi.org/10.5772/intechopen.105469.
|
11
|
Sejda A, Grajkowska W, Trubicka J,
Szutowicz E, Wojdacz T, Kloc W and Iżycka-Świeszewska E: WHO CNS5
2021 classification of gliomas: A practical review and road signs
for diagnosing pathologists and proper patho-clinical and
neuro-oncological cooperation. Folia Neuropathol. 60:137–152.
2022.PubMed/NCBI View Article : Google Scholar
|
12
|
Valdebenito J and Medina F: Machine
learning approaches to study glioblastoma: A review of the last
decade of applications. Cancer Rep (Hoboken).
2(e1226)2019.PubMed/NCBI View Article : Google Scholar
|
13
|
Ehret F, Kaul D, Clusmann H, Delev D and
Kernbach JM: Machine learning-based radiomics in neuro-oncology.
Acta Neurochir Suppl. 134:139–151. 2022.PubMed/NCBI View Article : Google Scholar
|
14
|
Chang K, Beers AL, Bai HX, Brown JM, Ly
KI, Li X, Senders JT, Kavouridis VK, Boaro A, Su C, et al:
Automatic assessment of glioma burden: A deep learning algorithm
for fully automated volumetric and bidimensional measurement. Neuro
Oncol. 21:1412–1422. 2019.PubMed/NCBI View Article : Google Scholar
|
15
|
Shaver MM, Kohanteb PA, Chiou C, Bardis
MD, Chantaduly C, Bota D, Filippi CG, Weinberg B, Grinband J, Chow
D and Chang PD: Optimizing neuro-oncology imaging: A review of deep
learning approaches for glioma imaging. Cancers (Basel).
11(829)2019.PubMed/NCBI View Article : Google Scholar
|
16
|
Rajagopal R: Glioma brain tumor detection
and segmentation using weighting random forest classifier with
optimized ant colony features. Int J Imag Syst Tech. 29:353–359.
2019.
|
17
|
Alqazzaz S, Sun X, Yang X and Nokes L:
Automated brain tumor segmentation on multi-modal mr image using
segnet. Computational Visual Media. 5:209–219. 2019.
|
18
|
Reddy KR and Dhuli R: Segmentation and
classification of brain tumors from MRI images based on adaptive
mechanisms and ELDP feature descriptor. Biomed Signal Proc Control.
76(103704)2022.
|
19
|
Mathiyalagan G and Devaraj D: A machine
learning classification approach based glioma brain tumor
detection. Int J Imag Syst Tech. 31:1424–1436. 2021.
|
20
|
Subramanian H, Dey R, Brim WR, Tillmanns
N, Petersen GC, Brackett A, Mahajan A, Johnson M, Malhotra A and
Aboian M: Trends in development of novel machine learning methods
for the identification of gliomas in datasets that include
Non-Glioma images: A systematic review. Front Oncol.
11(788819)2021.PubMed/NCBI View Article : Google Scholar
|
21
|
Jekel L, Brim WR, von Reppert M, Staib L,
Petersen GC, Merkaj S, Subramanian H, Zeevi T, Payabvash S,
Bousabarah K, et al: Machine learning applications for
differentiation of glioma from brain metastasis-a systematic
review. Cancers (Basel). 14(1369)2022.PubMed/NCBI View Article : Google Scholar
|
22
|
Fekonja LS, Wang Z, Cacciola A, Roine T,
Aydogan DB, Mewes D, Vellmer S, Vajkoczy P and Picht T: Network
analysis shows decreased ipsilesional structural connectivity in
glioma patients. Commun Biol. 23(258)2022.PubMed/NCBI View Article : Google Scholar
|
23
|
Park JE, Kickingereder P and Kim HS:
Radiomics and deep learning from research to clinical workflow:
Neuro-oncologic imaging. Korean J Radiol. 21:1126–1137.
2020.PubMed/NCBI View Article : Google Scholar
|
24
|
Artzi M, Bressler I and Bashat DB:
Differentiation between glioblastoma, brain metastasis and subtypes
using radiomics analysis. J Magn Reson Imaging. 50:519–528.
2019.PubMed/NCBI View Article : Google Scholar
|
25
|
Qian Z, Li Y, Wang Y, Li L, Li R, Wang K,
Li S, Tang K, Zhang C, Fan X, et al: Differentiation of
glioblastoma from solitary brain metastases using radiomic
machine-learning classifiers. Cancer Lett. 451:128–135.
2019.PubMed/NCBI View Article : Google Scholar
|
26
|
Kang D, Park JE, Kim YH, Kim JH, Oh JY,
Kim J, Kim Y, Kim ST and Kim HS: Diffusion radiomics as a
diagnostic model for atypical manifestation of primary central
nervous system lymphoma: Development and multicenter external
validation. Neuro Oncol. 20:1251–1261. 2018.PubMed/NCBI View Article : Google Scholar
|
27
|
Verma RK, Wiest R, Locher C, Heldner MR,
Schucht P, Raabe A, Gralla J, Kamm CP, Slotboom J and
Kellner-Weldon F: Differentiating enhancing multiple sclerosis
lesions, glioblastoma, and lymphoma with dynamic texture parameters
analysis (DTPA): A feasibility study. Med Phys. 44:4000–4008.
2017.PubMed/NCBI View
Article : Google Scholar
|
28
|
Gore S, Chougule T, Jagtap J, Saini J and
Ingalhalikar M: A review of Radiomics and deep predictive modeling
in glioma characterization. Acad Radiol. 28:1599–1621.
2021.PubMed/NCBI View Article : Google Scholar
|
29
|
Rathore S, Akbari H, Bakas S, Pisapia JM,
Shukla G, Rudie JD, Da X, Davuluri RV, Dahmane N, O'Rourke DM and
Davatzikos C: Multivariate analysis of preoperative magnetic
resonance imaging reveals transcriptomic classification of de
novo glioblastoma patients. Front Comput Neurosci.
13(81)2019.PubMed/NCBI View Article : Google Scholar
|
30
|
Zlochower A, Chow DS, Chang P, Khatri D,
Boockvar JA and Filippi CG: Deep learning AI applications in the
imaging of Glioma. Top Magn Reson Imaging. 29:115–110.
2020.PubMed/NCBI View Article : Google Scholar
|
31
|
Zhuge Y, Ning H, Mathen P, Cheng JY,
Krauze AV, Camphausen K and Miller RW: Automated glioma grading on
conventional MRI images using deep convolutional neural networks.
Med Phys. 47:3044–3053. 2020.PubMed/NCBI View Article : Google Scholar
|
32
|
Tian Q, Yan LF, Zhang X, Zhang X, Hu YC,
Han Y, Liu ZC, Nan HY, Sun Q, Sun YZ, et al: Radiomics strategy for
glioma grading using texture features from multiparametric MRI. J
Magn Reson Imaging. 48:1518–1528. 2018.PubMed/NCBI View Article : Google Scholar
|
33
|
Zhang X, Yan LF, Hu YC, Li G, Yang Y, Han
Y, Sun YZ, Liu ZC, Tian Q, Han ZY, et al: Optimizing a machine
learning based glioma grading system using multi-parametric MRI
histogram and texture features. Oncotarget. 8:47816–47830.
2017.PubMed/NCBI View Article : Google Scholar
|
34
|
Hedyehzadeh M, Maghooli K and
MomenGharibvand M: Glioma grade detection using grasshopper
optimization algorithm-optimized machine learning methods: The
cancer imaging archive study. Int J Imaging Syst Tech.
31:1670–1677. 2021.
|
35
|
Sengupta A, Ramaniharan AK, Gupta RK,
Agarwal S and Singh A: Glioma grading using a machine-learning
framework based on optimized features obtained from T1 perfusion
MRI and volumes of tumor components. J Magn Reson Imaging.
50:1295–1306. 2019.PubMed/NCBI View Article : Google Scholar
|
36
|
Hsu WW, Guo JM, Pei L, Chiang LA, Li YF,
Hsiao JC, Colen R and Liu P: A weakly supervised deep
learning-based method for glioma subtype classification using WSI
and mpMRIs. Sci Rep. 12(6111)2022.PubMed/NCBI View Article : Google Scholar
|
37
|
Hagiwara A, Tatekawa H, Yao J, Raymond C,
Everson R, Patel K, Mareninov S, Yong WH, Salamon N, Pope WB, et
al: Visualization of tumor heterogeneity and prediction of
isocitrate dehydrogenase mutation status for human gliomas using
multiparametric physiologic and metabolic MRI. Sci Rep.
12(1078)2022.PubMed/NCBI View Article : Google Scholar
|
38
|
Ozturk-Isik E, Cengiz S, Ozcan A, Yakicier
C, Danyeli AE, Pamir MN, Özduman K and Dincer A: Identification of
IDH and TERTp mutation status using 1 H-MRS in 112 hemispheric
diffuse gliomas. J Magn Reson Imaging. 51:1799–1809.
2020.PubMed/NCBI View Article : Google Scholar
|
39
|
Yogananda CG, Shah BR, Vejdani-Jahromi M,
Nalawade SS, Murugesan GK, Yu FF and Pinho MC: A novel fully
automated MRI-based deep-learning method for classification of IDH
mutation status in brain gliomas. Neuro Oncol. 22:402–411.
2020.PubMed/NCBI View Article : Google Scholar
|
40
|
Nalawade S, Murugesan GK, Vejdani-Jahromi
M, Fisicaro RA, Yogananda CG, Wagner B, Mickey B, Maher E, Pinho
MC, Fei B, et al: Classification of brain tumor isocitrate
dehydrogenase status using MRI and deep learning. J Med Imaging
(Bellingham). 6(046003)2019.PubMed/NCBI View Article : Google Scholar
|
41
|
Hegi ME, Diserens AC, Gorlia T, Hamou MF,
de Tribolet N, Weller M, Kros JM, Hainfellner JA, Mason W, Mariani
L, et al: MGMT gene silencing and benefit from temozolomide in
glioblastoma. N Engl J Med. 352:997–1003. 2005.PubMed/NCBI View Article : Google Scholar
|
42
|
Levner I, Drabycz S, Roldan G, De Robles
P, Cairncross JG and Mitchell R: Predicting MGMT methylation status
of glioblastomas from MRI texture. Med Image Comput Comput Assist
Interv. 12(Pt2):522–530. 2009.PubMed/NCBI View Article : Google Scholar
|
43
|
Korfiatis P, Kline TL, Lachance DH, Parney
IF, Buckner JC and Erickson BJ: Residual deep convolutional neural
network predicts MGMT methylation status. J Dig Imaging.
30:622–628. 2017.PubMed/NCBI View Article : Google Scholar
|
44
|
Chang P, Grinband J, Weinberg BD, Bardis
M, Khy M, Cadena G, Su MY, Cha S, Filippi CG, Bota D, et al:
Deep-learning convolutional neural networks accurately classify
genetic mutations in gliomas. AJNR Am J Neuroradiol. 39:1201–1207.
2018.PubMed/NCBI View Article : Google Scholar
|
45
|
Zhang S, Sun H, Su X, Yang X, Wang W, Wan
X, Tan Q, Chen N, Yue Q and Gong Q: Automated machine learning to
predict the co-occurrence of isocitrate dehydrogenase mutations and
O6-methylguanine-DNA methyltransferase promoter methylation in
patients with gliomas. J Magn Reson Imaging. 54:197–205.
2021.PubMed/NCBI View Article : Google Scholar
|
46
|
Jovčevska I: Next generation sequencing
and machine learning technologies are painting the epigenetic
portrait of glioblastoma. Front Oncol. 10(798)2020.PubMed/NCBI View Article : Google Scholar
|
47
|
Li ZC, Bai H, Sun Q, Li Q, Liu L, Zou Y,
Chen Y, Liang C and Zheng H: Multiregional radiomics features from
multiparametric MRI for prediction of MGMT methylation status in
glioblastoma multiforme: A multicentre study. Eur Radiol.
28:3640–3650. 2020.PubMed/NCBI View Article : Google Scholar
|
48
|
Xi YB, Guo F, Xu ZL, Li C, Wei W, Tian P,
Liu TT, Liu L, Chen G, Ye J, et al: Radiomics signature: A
potential biomarker for the prediction of MGMT promoter methylation
in glioblastoma. J Magn Resonan Imaging. 47:1380–1387.
2021.PubMed/NCBI View Article : Google Scholar
|
49
|
Kong Z, Lin Y, Jiang C, Li L, Liu Z, Wang
Y, Dai C, Liu D, Qin X, Wang Y, et al: 18F-FDG-PET-based Radiomics
signature predicts MGMT promoter methylation status in primary
diffuse glioma. Cancer Imaging. 19(58)2019.PubMed/NCBI View Article : Google Scholar
|
50
|
Razek AA, Alksas A, Shehata M, AbdelKhalek
A, Baky KA, El-Baz A and Helmy E: Clinical applications of
artificial intelligence and radiomics in neuro-oncology imaging.
Insights Imaging. 12(152)2021.PubMed/NCBI View Article : Google Scholar
|
51
|
Shofty B, Artzi M, Bashat DB, Liberman G,
Haim O, Kashanian A, Bokstein F, Blumenthal DT, Ram Z and Shahar T:
MRI radiomics analysis of molecular alterations in low-grade
gliomas. Int J Comput Assist Radiol Surg. 13:563–571.
2018.PubMed/NCBI View Article : Google Scholar
|
52
|
Ge C, Gu IYH, Jakola AS and Yang J: Deep
learning and multi-sensor fusion for glioma classification using
multistream 2d convolutional networks. Ann Int Conf IEEE Eng Med
Biol Soc. 2018:5894–5897. 2018.PubMed/NCBI View Article : Google Scholar
|
53
|
Han Y, Xie Z, Zang Y, Zhang S, Gu D, Zhou
M, Gevaert O, Wei J, Li C, Chen H, et al: Non-invasive genotype
prediction of chromosome 1p/19Q co-deletion by development and
validation of an MRI-based radiomics signature in lower-grade
gliomas. J Neurooncol. 140:297–306. 2018.PubMed/NCBI View Article : Google Scholar
|
54
|
Akkus Z, Ali I, Sedlář J, Agrawal JP,
Parney IF, Giannini C and Erickson BJ: Predicting deletion of
chromosomal arms 1p/19q in low-grade gliomas from MR images using
machine intelligence. J Digit Imaging. 30:469–476. 2017.PubMed/NCBI View Article : Google Scholar
|
55
|
Chen H, Li C, Zheng L, Lu W, Li Y and Wei
Q: A machine learning-based survival prediction model of high grade
glioma by integration of clinical and dose-volume histogram
parameters. Cancer Med. 10:2774–2786. 2021.PubMed/NCBI View Article : Google Scholar
|
56
|
Nie D, Zhang H, Adeli E, Liu L and Shen D:
3D deep learning for multi-modal imaging-guided survival time
prediction of brain tumor patients. Med Image Comput Comput Assist
Interv. 9901:212–220. 2016.PubMed/NCBI View Article : Google Scholar
|
57
|
Chato L and Latifi S: Machine learning and
radiomic features to predict overall survival time for glioblastoma
patients. J Pers Med. 11(1336)2021.PubMed/NCBI View Article : Google Scholar
|
58
|
Das S, Bose S, Nayak GK, Satapathy SC and
Saxena S: Brain tumor segmentation and overall survival period
prediction in glioblastoma multiforme using radiomic features.
Concurrency Computat Pract Exper. 34(e6501)2021.
|
59
|
Xu Y, He X, Li Y, Pang P, Shu Z and Gong
X: The nomogram of MRI based radiomics with complementary visual
features by machine learning improves stratification of
glioblastoma patients: A multicenter study. J Magn Reson Imaging.
54:571–583. 2021.PubMed/NCBI View Article : Google Scholar
|
60
|
Peeken JC, Goldberg T, Pyka T, Bernhofer
M, Wiestler B, Kessel KA, Tafti PD, Nüsslin F, Braun AE, Zimmer C,
et al: Combining multimodal imaging and treatment features improves
machine learning-based prognostic assessment in patients with
glioblastoma multiforme. Cancer Med. 8:128–136. 2019.PubMed/NCBI View Article : Google Scholar
|
61
|
Kickingereder P, Burth S, Wick A, Götz M,
Eidel O, Schlemmer HP, Maier-Hein KH, Wick W, Bendszus M, Radbruch
A and Bonekamp D: Radiomic profiling of glioblastoma: Identifying
an imaging predictor of patient survival with improved performance
over established clinical and radiologic risk models. Radiology.
280:880–889. 2016.PubMed/NCBI View Article : Google Scholar
|
62
|
Xiang CX, Liu XG, Zhou DQ, Zhou Y, Wang X
and Chen F: Identification of a glioma functional network from Gene
Fitness data using machine learning. J Cell Mol Med. 26:1253–1263.
2022.PubMed/NCBI View Article : Google Scholar
|
63
|
Akbari H, Rathore S, Bakas S, Nasrallah
MLP, Shukla G, Mamourian E, Rozycki M, Bagley SJ, Rudie JD,
Flanders AE, et al: Histopathology-Validated machine learning
radiographic Biomarker for noninvasive discrimination between true
progression and pseudo-progression in glioblastoma. Cancer.
126:2625–2636. 2020.PubMed/NCBI View Article : Google Scholar
|
64
|
Valdebenito S, D'Amico D and Eugenin E:
Novel approaches for glioblastoma treatment: Focus on tumor
heterogeneity, treatment resistance, and computational tools.
Cancer Rep (Hoboken). 2(e1220)2019.PubMed/NCBI View Article : Google Scholar
|
65
|
Alhasan AS: Clinical applications of
artificial intelligence, machine learning, and deep learning in the
imaging of gliomas: A systematic review. Cureus.
14(e19580)2021.PubMed/NCBI View Article : Google Scholar
|
66
|
Rudie JD, Rauschecker AM, Bryan RN,
Davatzikos C and Mohan S: Emerging applications of artificial
intelligence in neuro-oncology. Radiology. 290:607–618.
2019.PubMed/NCBI View Article : Google Scholar
|
67
|
Page MJ, McKenzie JE, Bossuyt PM, Boutron
I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan
SE, et al: The PRISMA 2020 statement: An updated guideline for
reporting systematic reviews. BMJ. 372(n71)2021.PubMed/NCBI View Article : Google Scholar
|