Exploring oncology treatment strategies with tyrosine kinase inhibitors through advanced 3D models (Review)
- Authors:
- Giorgia Isinelli
- Sharon Failla
- Roberto Plebani
- Alessandro Prete
-
Affiliations: Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02115, USA, Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy, Department of Medical, Oral and Biotechnological Sciences, ‘G. D'Annunzio’ University, I‑66100 Chieti‑Pescara, Italy, Department of Clinical and Experimental Medicine, Endocrine Unit 2, University of Pisa, I‑56122 Pisa, Italy - Published online on: December 20, 2024 https://doi.org/10.3892/mi.2024.212
- Article Number: 13
-
Copyright : © Isinelli et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY 4.0].
This article is mentioned in:
Abstract
Cao H, Duan L, Zhang Y, Cao J and Zhang K: Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity. Signal Transduct Target Ther. 6(426)2021.PubMed/NCBI View Article : Google Scholar | |
Munir MU: Nanomedicine penetration to tumor: Challenges, and advanced strategies to tackle this issue. Cancers (Basel). 14(2904)2022.PubMed/NCBI View Article : Google Scholar | |
Mansoori B, Mohammadi A, Davudian S, Shirjang S and Baradaran B: The different mechanisms of cancer drug resistance: A brief review. Adv Pharm Bull. 7:339–348. 2017.PubMed/NCBI View Article : Google Scholar | |
Gkretsi V, Stylianou A, Papageorgis P, Polydorou C and Stylianopoulos T: Remodeling components of the tumor microenvironment to enhance cancer therapy. Front Oncol. 5(214)2015.PubMed/NCBI View Article : Google Scholar | |
Tosca EM, Ronchi D, Facciolo D and Magni P: Replacement, reduction, and refinement of animal experiments in anticancer drug development: The contribution of 3D in vitro cancer models in the drug efficacy assessment. Biomedicines. 11(1058)2023.PubMed/NCBI View Article : Google Scholar | |
Khalil AS, Jaenisch R and Mooney DJ: Engineered tissues and strategies to overcome challenges in drug development. Adv Drug Deliv Rev. 158:116–139. 2020.PubMed/NCBI View Article : Google Scholar | |
Booij TH, Price LS and Danen EHJ: 3D cell-based assays for drug screens: Challenges in imaging, image analysis, and high-content analysis. SLAS Discov. 24:615–627. 2019.PubMed/NCBI View Article : Google Scholar | |
Candini O, Grisendi G, Foppiani EM, Brogli M, Aramini B, Masciale V, Spano C, Petrachi T, Veronesi E, Conte P, et al: A novel 3D in vitro platform for pre-clinical investigations in drug testing, gene therapy, and immuno-oncology. Sci Rep. 9(7154)2019.PubMed/NCBI View Article : Google Scholar | |
Unger C, Kramer N, Walzl A, Scherzer M, Hengstschläger M and Dolznig H: Modeling human carcinomas: Physiologically relevant 3D models to improve anti-cancer drug development. Adv Drug Deliv Rev. 79-80:50–67. 2014.PubMed/NCBI View Article : Google Scholar | |
Kelm JM, Lal-Nag M, Sittampalam GS and Ferrer M: Translational in vitro research: Integrating 3D drug discovery and development processes into the drug development pipeline. Drug Discov Today. 24:26–30. 2019.PubMed/NCBI View Article : Google Scholar | |
Krisnawan VE, Stanley JA, Schwarz JK and DeNardo DG: Tumor microenvironment as a regulator of radiation therapy: New insights into stromal-mediated radioresistance. Cancers (Basel). 12(2916)2020.PubMed/NCBI View Article : Google Scholar | |
Bonnier F, Keating ME, Wróbel TP, Majzner K, Baranska M, Garcia-Munoz A and Byrne HJ: Cell viability assessment using the Alamar blue assay: A comparison of 2D and 3D cell culture models. Toxicol In Vitro. 29:124–131. 2015.PubMed/NCBI View Article : Google Scholar | |
Duval K, Grover H, Han LH, Mou Y, Pegoraro AF, Fredberg J and Chen Z: Modeling physiological events in 2D vs. 3D cell culture. Physiology (Bethesda). 32:266–277. 2017.PubMed/NCBI View Article : Google Scholar | |
Yi HG, Jeong YH, Kim Y, Choi YJ, Moon HE, Park SH, Kang KS, Bae M, Jang J, Youn H, et al: A bioprinted human-glioblastoma-on-a-chip for the identification of patient-specific responses to chemoradiotherapy. Nat Biomed Eng. 3:509–519. 2019.PubMed/NCBI View Article : Google Scholar | |
Gomez-Roman N, Chong MY, Chahal SK, Caragher SP, Jackson MR, Stevenson KH, Dongre SA and Chalmers AJ: Radiation responses of 2D and 3D glioblastoma cells: A novel, 3D-specific radioprotective role of VEGF/Akt signaling through functional activation of NHEJ. Mol Cancer Ther. 19:575–589. 2020.PubMed/NCBI View Article : Google Scholar | |
Kalli M and Stylianopoulos T: Toward innovative approaches for exploring the mechanically regulated tumor-immune microenvironment. APL Bioeng. 8(011501)2024.PubMed/NCBI View Article : Google Scholar | |
Zhou Z, Vessella T, Wang P, Cui F, Wen Q and Zhou HS: Mechanical cues in tumor microenvironment on chip. Biosens Bioelectron X. 14(100376)2023. | |
Langhans SA: Three-dimensional in vitro cell culture models in drug discovery and drug repositioning. Front Pharmacol. 9(6)2018.PubMed/NCBI View Article : Google Scholar | |
Rodrigues J, Heinrich MA, Teixeira LM and Prakash J: 3D in vitro model (R)evolution: Unveiling tumor-stroma interactions. Trends Cancer. 7:249–264. 2021.PubMed/NCBI View Article : Google Scholar | |
Jensen C and Teng Y: Is it time to start transitioning from 2D to 3D cell culture? Front Mol Biosci. 7(33)2020.PubMed/NCBI View Article : Google Scholar | |
Gill BJ and West JL: Modeling the tumor extracellular matrix: Tissue engineering tools repurposed towards new frontiers in cancer biology. J Biomech. 47:1969–1978. 2014.PubMed/NCBI View Article : Google Scholar | |
Wishart G, Gupta P, Schettino G, Nisbet A and Velliou E: 3d tissue models as tools for radiotherapy screening for pancreatic cancer. Br J Radiol. 94(20201397)2021.PubMed/NCBI View Article : Google Scholar | |
Mukubou H, Tsujimura T, Sasaki R and Ku Y: The role of autophagy in the treatment of pancreatic cancer with gemcitabine and ionizing radiation. Int J Oncol. 37:821–828. 2010.PubMed/NCBI View Article : Google Scholar | |
Baselet B, Sonveaux P, Baatout S and Aerts A: Pathological effects of ionizing radiation: Endothelial activation and dysfunction. Cell Mol Life Sci. 76:699–728. 2019.PubMed/NCBI View Article : Google Scholar | |
Baker BM and Chen CS: Deconstructing the third dimension: How 3D culture microenvironments alter cellular cues. J Cell Sci. 125(Pt 13):3015–3024. 2012.PubMed/NCBI View Article : Google Scholar | |
Kapałczyńska M, Kolenda T, Przybyła W, Zajączkowska M, Teresiak A, Filas V, Ibbs M, Bliźniak R, Łuczewski Ł and Lamperska K: 2D and 3D cell cultures - a comparison of different types of cancer cell cultures. Arch Med Sci. 14:910–919. 2018.PubMed/NCBI View Article : Google Scholar | |
Riedl A, Schlederer M, Pudelko K, Stadler M, Walter S, Unterleuthner D, Unger C, Kramer N, Hengstschläger M, Kenner L, et al: Comparison of cancer cells in 2D vs 3D culture reveals differences in AKT-mTOR-S6K signaling and drug responses. J Cell Sci. 130:203–218. 2017.PubMed/NCBI View Article : Google Scholar | |
Cekanova M and Rathore K: Animal models and therapeutic molecular targets of cancer: Utility and limitations. Drug Des Devel Ther. 8:1911–1921. 2014.PubMed/NCBI View Article : Google Scholar | |
Horvath P, Aulner N, Bickle M, Davies AM, Nery ED, Ebner D, Montoya MC, Östling P, Pietiäinen V, Price LS, et al: Screening out irrelevant cell-based models of disease. Nat Rev Drug Discov. 15:751–769. 2016.PubMed/NCBI View Article : Google Scholar | |
Amoedo ND, Obre E and Rossignol R: Drug discovery strategies in the field of tumor energy metabolism: Limitations by metabolic flexibility and metabolic resistance to chemotherapy. Biochim Biophys Acta Bioenerg. 1858:674–685. 2017.PubMed/NCBI View Article : Google Scholar | |
Kerslake R, Belay B, Panfilov S, Hall M, Kyrou I, Randeva HS, Hyttinen J, Karteris E and Sisu C: Transcriptional landscape of 3D vs. 2D ovarian cancer cell models. Cancers (Basel). 15(3350)2023.PubMed/NCBI View Article : Google Scholar | |
Zhang B, Korolj A, Lai BFL and Radisic M: Advances in organ-on-a-chip engineering. Nat Rev Mater. 3:257–278. 2018. | |
Luca AC, Mersch S, Deenen R, Schmidt S, Messner I, Schäfer KL, Baldus SE, Huckenbeck W, Piekorz RP, Knoefel WT, et al: Impact of the 3D microenvironment on phenotype, gene expression, and EGFR inhibition of colorectal cancer cell lines. PLoS One. 8(e59689)2013.PubMed/NCBI View Article : Google Scholar | |
van Duinen V, Trietsch SJ, Joore J, Vulto P and Hankemeier T: Microfluidic 3D cell culture: From tools to tissue models. Curr Opin Biotechnol. 35:118–126. 2015.PubMed/NCBI View Article : Google Scholar | |
Antonelli F: 3D cell models in radiobiology: Improving the predictive value of in vitro research. Int J Mol Sci. 24(10620)2023.PubMed/NCBI View Article : Google Scholar | |
Boucherit N, Gorvel L and Olive D: 3D tumor models and their use for the testing of immunotherapies. Front Immunol. 11(603640)2020.PubMed/NCBI View Article : Google Scholar | |
Barozzi D and Scielzo C: Emerging strategies in 3D culture models for hematological cancers. Hemasphere. 7(e932)2023.PubMed/NCBI View Article : Google Scholar | |
Bédard P, Gauvin S, Ferland K, Caneparo C, Pellerin È, Chabaud S and Bolduc S: Innovative human three-dimensional tissue-engineered models as an alternative to animal testing. Bioengineering (Basel). 7(115)2020.PubMed/NCBI View Article : Google Scholar | |
Li W, Zhou Z, Zhou X, Khoo BL, Gunawan R, Chin YR, Zhang L, Yi C, Guan X and Yang M: 3D biomimetic models to reconstitute tumor microenvironment in vitro: Spheroids, organoids, and Tumor-on-a-chip. Adv Healthc Mater. 12(e2202609)2023.PubMed/NCBI View Article : Google Scholar | |
Barbosa MAG, Xavier CPR, Pereira RF, Petrikaitė V and Vasconcelos MH: 3D cell culture models as recapitulators of the tumor microenvironment for the screening of anti-cancer drugs. Cancers (Basel). 14(190)2021.PubMed/NCBI View Article : Google Scholar | |
Amaral RLF, Miranda M, Marcato PD and Swiech K: Comparative analysis of 3D bladder tumor spheroids obtained by forced floating and hanging drop methods for drug screening. Front Physiol. 8(605)2017.PubMed/NCBI View Article : Google Scholar | |
Strobel HA, Calamari EL, Alphonse B, Hookway TA and Rolle MW: Fabrication of custom agarose wells for cell seeding and tissue ring self-assembly using 3D-Printed Molds. J Vis Exp. (134)(56618)2018.PubMed/NCBI View Article : Google Scholar | |
Rauh J, Milan F, Günther KP and Stiehler M: Bioreactor systems for bone tissue engineering. Tissue Eng Part B Rev. 17:263–280. 2011.PubMed/NCBI View Article : Google Scholar | |
Antoni D, Burckel H, Josset E and Noel G: Three-dimensional cell culture: A breakthrough in vivo. Int J Mol Sci. 16:5517–5527. 2015.PubMed/NCBI View Article : Google Scholar | |
Zhang S, Liu P, Chen L, Wang Y, Wang Z and Zhang B: The effects of spheroid formation of adipose-derived stem cells in a microgravity bioreactor on stemness properties and therapeutic potential. Biomaterials. 41:15–25. 2015.PubMed/NCBI View Article : Google Scholar | |
Chaicharoenaudomrung N, Kunhorm P and Noisa P: Three-dimensional cell culture systems as an in vitro platform for cancer and stem cell modeling. World J Stem Cells. 11:1065–1083. 2019.PubMed/NCBI View Article : Google Scholar | |
Marques IA, Fernandes C, Tavares NT, Pires AS, Abrantes AM and Botelho MF: Magnetic-based human tissue 3D cell culture: A systematic review. Int J Mol Sci. 23(12681)2022.PubMed/NCBI View Article : Google Scholar | |
Patra B, Peng CC, Liao WH, Lee CH and Tung YC: Drug testing and flow cytometry analysis on a large number of uniform sized tumor spheroids using a microfluidic device. Sci Rep. 6(21061)2016.PubMed/NCBI View Article : Google Scholar | |
Zanoni M, Piccinini F, Arienti C, Zamagni A, Santi S, Polico R, Bevilacqua A and Tesei A: 3D tumor spheroid models for in vitro therapeutic screening: A systematic approach to enhance the biological relevance of data obtained. Sci Rep. 6(19103)2016.PubMed/NCBI View Article : Google Scholar | |
Pinto B, Henriques AC, Silva PMA and Bousbaa H: Three-dimensional spheroids as in vitro preclinical models for cancer research. Pharmaceutics. 12(1186)2020.PubMed/NCBI View Article : Google Scholar | |
Rodrigues DB, Reis RL and Pirraco RP: Modelling the complex nature of the tumor microenvironment: 3D tumor spheroids as an evolving tool. J Biomed Sci. 31(13)2024.PubMed/NCBI View Article : Google Scholar | |
Vakhshiteh F, Bagheri Z, Soleimani M, Ahvaraki A, Pournemat P, Alavi SE and Madjd Z: Heterotypic tumor spheroids: A platform for nanomedicine evaluation. J Nanobiotechnology. 21(249)2023.PubMed/NCBI View Article : Google Scholar | |
Jiang X, Oyang L, Peng Q, Liu Q, Xu X, Wu N, Tan S, Yang W, Han Y, Lin J, et al: Organoids: opportunities and challenges of cancer therapy. Front Cell Dev Biol. 11(1232528)2023.PubMed/NCBI View Article : Google Scholar | |
Hou X, Du C, Lu L, Yuan S, Zhan M, You P and Du H: Opportunities and challenges of patient-derived models in cancer research: Patient-derived xenografts, patient-derived organoid and patient-derived cells. World J Surg Oncol. 20(37)2022.PubMed/NCBI View Article : Google Scholar | |
Qu J, Kalyani FS, Liu L, Cheng T and Chen L: Tumor organoids: Synergistic applications, current challenges, and future prospects in cancer therapy. Cancer Commun (Lond). 41:1331–1353. 2021.PubMed/NCBI View Article : Google Scholar | |
Idrisova KF, Simon HU and Gomzikova MO: Role of patient-derived models of cancer in translational oncology. Cancers (Basel). 15(139)2023.PubMed/NCBI View Article : Google Scholar | |
Sun H, Cao S, Mashl RJ, Mo CK, Zaccaria S, Wendl MC, Davies SR, Bailey MH, Primeau TM, Hoog J, et al: Comprehensive characterization of 536 patient-derived xenograft models prioritizes candidates for targeted treatment. Nat Commun. 12(5086)2021.PubMed/NCBI View Article : Google Scholar | |
Tharehalli U, Svinarenko M and Lechel A: Remodelling and improvements in organoid technology to study liver carcinogenesis in a dish. Stem Cells Int. 2019(3831213)2019.PubMed/NCBI View Article : Google Scholar | |
Yip S, Wang N and Sugimura R: Give them vasculature and immune cells: How to fill the gap of organoids. Cells Tissues Organs. 212:369–382. 2023.PubMed/NCBI View Article : Google Scholar | |
Zhang S, Wan Z and Kamm RD: Vascularized organoids on a chip: Strategies for engineering organoids with functional vasculature. Lab Chip. 21:473–488. 2021.PubMed/NCBI View Article : Google Scholar | |
Bar-Ephraim YE, Kretzschmar K, Asra P, de Jongh E, Boonekamp KE, Drost J, van Gorp J, Pronk A, Smakman N, Gan I, et al: Modelling cancer immunomodulation using epithelial organoid cultures. bioRxiv, p377655, 2018. | |
Kim J, Koo BK and Knoblich JA: Human organoids: Model systems for human biology and medicine. Nat Rev Mol Cell Biol. 21:571–584. 2020.PubMed/NCBI View Article : Google Scholar | |
Ferreira LP, Gaspar VM and Mano JF: Design of spherically structured 3D in vitro tumor models-Advances and prospects. Acta Biomater. 75:11–34. 2018.PubMed/NCBI View Article : Google Scholar | |
Unnikrishnan K, Thomas LV and Ram Kumar RM: Advancement of scaffold-based 3D cellular models in cancer tissue engineering: An update. Front Oncol. 11(733652)2021.PubMed/NCBI View Article : Google Scholar | |
Sun L, Wang X, He Y, Chen B, Shan B, Yang J, Wang R, Zeng X, Li J, Tan H and Liang R: Polyurethane scaffold-based 3D lung cancer model recapitulates in vivo tumor biological behavior for nanoparticulate drug screening. Regen Biomater. 10(rbad091)2023.PubMed/NCBI View Article : Google Scholar | |
Li X, Shan J, Chen X, Cui H, Wen G and Yu Y: Decellularized diseased tissues: Current state-of-the-art and future directions. MedComm (2020). 4(e399)2023.PubMed/NCBI View Article : Google Scholar | |
Zhang CY, Fu CP, Li XY, Lu XC, Hu LG, Kankala RK, Wang SB and Chen AZ: Three-dimensional bioprinting of decellularized extracellular matrix-based bioinks for tissue engineering. Molecules. 27(3442)2022.PubMed/NCBI View Article : Google Scholar | |
Habanjar O, Diab-Assaf M, Caldefie-Chezet F and Delort L: 3D cell culture systems: Tumor application, advantages, and disadvantages. Int J Mol Sci. 22(12200)2021.PubMed/NCBI View Article : Google Scholar | |
Abuwatfa WH, Pitt WG and Husseini GA: Scaffold-based 3D cell culture models in cancer research. J Biomed Sci. 31(7)2024.PubMed/NCBI View Article : Google Scholar | |
Shivalkar S and Singh S: Solid freeform techniques application in bone tissue engineering for scaffold fabrication. Tissue Eng Regen Med. 14:187–200. 2017.PubMed/NCBI View Article : Google Scholar | |
Suri S, Han LH, Zhang W, Singh A, Chen S and Schmidt CE: Solid freeform fabrication of designer scaffolds of hyaluronic acid for nerve tissue engineering. Biomed Microdevices. 13:983–993. 2011.PubMed/NCBI View Article : Google Scholar | |
Tony A, Badea I, Yang C, Liu Y, Wells G, Wang K, Yin R, Zhang H and Zhang W: The additive manufacturing approach to polydimethylsiloxane (PDMS) microfluidic devices: Review and future directions. Polymers (Basel). 15(1926)2023.PubMed/NCBI View Article : Google Scholar | |
Anthon SG and Valente KP: Vascularization strategies in 3D cell culture models: From scaffold-free models to 3D bioprinting. Int J Mol Sci. 23(14582)2022.PubMed/NCBI View Article : Google Scholar | |
Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY and Ingber DE: Reconstituting organ-level lung functions on a chip. Science. 328:1662–1668. 2010.PubMed/NCBI View Article : Google Scholar | |
Wang Y, Gao Y, Pan Y, Zhou D, Liu Y, Yin Y, Yang J, Wang Y and Song Y: Emerging trends in organ-on-a-chip systems for drug screening. Acta Pharm Sin B. 13:2483–2509. 2023.PubMed/NCBI View Article : Google Scholar | |
Li Z, Hui J, Yang P and Mao H: Microfluidic organ-on-a-chip system for disease modeling and drug development. Biosensors (Basel). 12(370)2022.PubMed/NCBI View Article : Google Scholar | |
Vargas R, Egurbide-Sifre A and Medina L: Organ-on-a-chip systems for new drugs development. ADMET DMPK. 9:111–141. 2021.PubMed/NCBI View Article : Google Scholar | |
Tajeddin A and Mustafaoglu N: Design and fabrication of organ-on-chips: Promises and challenges. Micromachines (Basel). 12(1443)2021.PubMed/NCBI View Article : Google Scholar | |
Si L, Bai H, Rodas M, Cao W, Oh CY, Jiang A, Moller R, Hoagland D, Oishi K, Horiuchi S, et al: A humanairway-on-a-chip for the rapid identification of candidate antiviral therapeutics and prophylactics. Nat Biomed Eng. 5:815–829. 2021.PubMed/NCBI View Article : Google Scholar | |
Bai H, Si L, Jiang A, Belgur C, Zhai Y, Plebani R, Oh CY, Rodas M, Patil A, Nurani A, et al: Mechanical control of innate immune responses against viral infection revealed in a human lung alveolus chip. Nat Commun. 13(1928)2022.PubMed/NCBI View Article : Google Scholar | |
Plebani R, Bai H, Si L, Li J, Zhang C and Romano M: 3D lung tissue models for studies on SARS-CoV-2 pathophysiology and therapeutics. Int J Mol Sci. 23(10071)2022.PubMed/NCBI View Article : Google Scholar | |
Plebani R, Potla R, Soong M, Bai H, Izadifar Z, Jiang A, Travis RN, Belgur C, Dinis A, Cartwright MJ, et al: Modeling pulmonary cystic fibrosis in a human lung airway-on-a-chip. J Cyst Fibros. 21:606–615. 2022.PubMed/NCBI View Article : Google Scholar | |
Bein A, Fadel CW, Swenor B, Cao W, Powers RK, Camacho DM, Naziripour A, Parsons A, LoGrande N, Sharma S, et al: Nutritional deficiency in an intestine-on-a-chip recapitulates injury hallmarks associated with environmental enteric dysfunction. Nat Biomed Eng. 6:1236–1247. 2022.PubMed/NCBI View Article : Google Scholar | |
Ewart L, Apostolou A, Briggs SA, Carman CV, Chaff JT, Heng AR, Jadalannagari S, Janardhanan J, Jang KJ, Joshipura SR, et al: Performance assessment and economic analysis of a human Liver-Chip for predictive toxicology. Commun Med (Lond). 2(154)2022.PubMed/NCBI View Article : Google Scholar | |
Benam KH, Novak R, Nawroth J, Hirano-Kobayashi M, Ferrante TC, Choe Y, Prantil-Baun R, Weaver JC, Bahinski A, Parker KK and Ingber DE: Matched-comparative modeling of normal and diseased human airway responses using a microengineered breathing lung chip. Cell Syst. 3:456–466.e4. 2016.PubMed/NCBI View Article : Google Scholar | |
Zommiti M, Connil N, Tahrioui A, Groboillot A, Barbey C, Konto-Ghiorghi Y, Lesouhaitier O, Chevalier S and Feuilloley MGJ: Organs-on-chips platforms are everywhere: A zoom on biomedical investigation. Bioengineering (Basel). 9(646)2022.PubMed/NCBI View Article : Google Scholar | |
Monteduro AG, Rizzato S, Caragnano G, Trapani A, Giannelli G and Maruccio G: Organs-on-chips technologies-A guide from disease models to opportunities for drug development. Biosens Bioelectron. 231(115271)2023.PubMed/NCBI View Article : Google Scholar | |
Zhao Y, Kankala RK, Wang SB and Chen AZ: Multi-organs-on-chips: Towards long-term biomedical investigations. Molecules. 24(675)2019.PubMed/NCBI View Article : Google Scholar | |
R N, Aggarwal A, Sravani AB, Mallya P and Lewis S: Organ-on-a-chip: An emerging research platform. Organogenesis. 19(2278236)2023.PubMed/NCBI View Article : Google Scholar | |
Mauriac H, Pannetier C and Casquillas GV: Organs on Chip Review. Elveflow. Available from: https://www.elveflow.com/microfluidic-reviews/organs-on-chip-3d-cell-culture/organs-chip-review/. | |
Sun W, Luo Z, Lee J, Kim HJ, Lee K, Tebon P, Feng Y, Dokmeci MR, Sengupta S and Khademhosseini A: Organ-on-a-chip for cancer and immune organs modeling. Adv Healthc Mater. 8(1801363)2019.PubMed/NCBI View Article : Google Scholar | |
van den Berg A, Mummery CL, Passier R and van der Meer AD: Personalised organs-on-chips: Functional testing for precision medicine. Lab Chip. 19:198–205. 2019.PubMed/NCBI View Article : Google Scholar | |
Wu J, Dong M, Rigatto C, Liu Y and Lin F: Lab-on-chip technology for chronic disease diagnosis. NPJ Digit Med. 1(7)2018.PubMed/NCBI View Article : Google Scholar | |
Glieberman AL, Pope BD, Zimmerman JF, Liu Q, Ferrier JP, Kenty JHR, Schrell AM, Mukhitov N, Shores KL, Tepole AB, et al: Synchronized stimulation and continuous insulin sensing in a microfluidic human Islet on a chip designed for scalable manufacturing. Lab Chip. 19:2993–3010. 2019.PubMed/NCBI View Article : Google Scholar | |
Wang D, Cong Y, Deng Q, Han X, Zhang S, Zhao L, Luo Y and Zhang X: Physiological and disease models of respiratory system based on organ-on-a-chip technology. Micromachines (Basel). 12(1106)2021.PubMed/NCBI View Article : Google Scholar | |
Kimura H, Sakai Y and Fujii T: Organ/body-on-a-chip based on microfluidic technology for drug discovery. Drug Metab Pharmacokinet. 33:43–48. 2018.PubMed/NCBI View Article : Google Scholar | |
Lu RXZ and Radisic M: Organ-on-a-chip platforms for evaluation of environmental nanoparticle toxicity. Bioact Mater. 6:2801–2819. 2021.PubMed/NCBI View Article : Google Scholar | |
Wikswo JP, Curtis EL, Eagleton ZE, Evans BC, Kole A, Hofmeister LH and Matloff WJ: Scaling and systems biology for integrating multiple organs-on-a-chip. Lab Chip. 13:3496–511. 2013.PubMed/NCBI View Article : Google Scholar | |
Bang S, Jeong S, Choi N and Kim HN: Brain-on-a-chip: A history of development and future perspective. Biomicrofluidics. 13(051301)2019.PubMed/NCBI View Article : Google Scholar | |
Mao M, Bei HP, Lam CH, Chen P, Wang S, Chen Y, He J and Zhao X: Human-on-leaf-chip: A biomimetic vascular system integrated with chamber-specific organs. Small. 16(e2000546)2020.PubMed/NCBI View Article : Google Scholar | |
Ramadan Q and Gijs MA: In vitro micro-physiological models for translational immunology. Lab Chip. 15:614–636. 2015.PubMed/NCBI View Article : Google Scholar | |
Mandrycky CJ, Howard CC, Rayner SG, Shin YJ and Zheng Y: Organ-on-a-chip systems for vascular biology. J Mol Cell Cardiol. 159:1–13. 2021.PubMed/NCBI View Article : Google Scholar | |
Chen Y, Gao D, Wang Y, Lin S and Jiang Y: A novel 3D breast-cancer-on-chip platform for therapeutic evaluation of drug delivery systems. Anal Chim Acta. 1036:97–106. 2018.PubMed/NCBI View Article : Google Scholar | |
Danku AE, Dulf EH, Braicu C, Jurj A and Berindan-Neagoe I: Organ-on-a-chip: A survey of technical results and problems. Front Bioeng Biotechnol. 10(840674)2022.PubMed/NCBI View Article : Google Scholar | |
de Haan L, Suijker J, van Roey R, Berges N, Petrova E, Queiroz K, Strijker W, Olivier T, Poeschke O, Garg S and van den Broek LJ: A microfluidic 3D endothelium-on-a-chip model to study transendothelial migration of T cells in health and disease. Int J Mol Sci. 22(8234)2021.PubMed/NCBI View Article : Google Scholar | |
van Duinen V, van den Heuvel A, Trietsch SJ, Lanz HL, van Gils JM, van Zonneveld AJ, Vulto P and Hankemeier T: 96 perfusable blood vessels to study vascular permeability in vitro. Sci Rep. 7(18071)2017.PubMed/NCBI View Article : Google Scholar | |
Trietsch SJ, Naumovska E, Kurek D, Setyawati MC, Vormann MK, Wilschut KJ, Lanz HL, Nicolas A, Ng CP, Joore J, et al: Membrane-free culture and real-time barrier integrity assessment of perfused intestinal epithelium tubes. Nat Commun. 8(262)2017.PubMed/NCBI View Article : Google Scholar | |
Ozer LY, Fayed HS, Ericsson J and Al Haj Zen A: Development of a cancer metastasis-on-chip assay for high throughput drug screening. Front Oncol. 13(1269376)2024.PubMed/NCBI View Article : Google Scholar | |
Cohen MH, Williams G, Johnson JR, Duan J, Gobburu J, Rahman A, Benson K, Leighton J, Kim SK, Wood R, et al: Approval summary for imatinib mesylate capsules in the treatment of chronic myelogenous leukemia. Clin Cancer Res. 8:935–942. 2002.PubMed/NCBI | |
Cohen P, Cross D and Jänne PA: Kinase drug discovery 20 years after imatinib: Progress and future directions. Nat Rev Drug Discov. 20:551–569. 2021.PubMed/NCBI View Article : Google Scholar | |
Blay JY, Kang YK, Nishida T and von Mehren M: Gastrointestinal stromal tumours. Nat Rev Dis Primer. 7(22)2021.PubMed/NCBI View Article : Google Scholar | |
Reita D, Pabst L, Pencreach E, Guérin E, Dano L, Rimelen V, Voegeli AC, Vallat L, Mascaux C and Beau-Faller M: Molecular mechanism of EGFR-TKI resistance in EGFR-mutated non-small cell lung cancer: Application to biological diagnostic and monitoring. Cancers (Basel). 13(4926)2021.PubMed/NCBI View Article : Google Scholar | |
Makhov P, Joshi S, Ghatalia P, Kutikov A, Uzzo RG and Kolenko VM: Resistance to systemic therapies in clear cell renal cell carcinoma: Mechanisms and Management Strategies. Mol Cancer Ther. 17:1355–1364. 2018.PubMed/NCBI View Article : Google Scholar | |
He J, Huang Z, Han L, Gong Y and Xie C: Mechanisms and management of 3rd-generation EGFR-TKI resistance in advanced non-small cell lung cancer (Review). Int J Oncol. 59(90)2021.PubMed/NCBI View Article : Google Scholar | |
Araki T, Kanda S, Horinouchi H and Ohe Y: Current treatment strategies for EGFR-mutated non-small cell lung cancer: From first line to beyond osimertinib resistance. Jpn J Clin Oncol. 53:547–561. 2023.PubMed/NCBI View Article : Google Scholar | |
Yoshifuji K and Sasaki K: Adverse events and dose modifications of tyrosine kinase inhibitors in chronic myelogenous leukemia. Front Oncol. 12(1021662)2022.PubMed/NCBI View Article : Google Scholar | |
Li Y, Mao T, Wang J, Zheng H, Hu Z, Cao P, Yang S, Zhu L, Guo S, Zhao X, et al: Toward the next generation EGFR inhibitors: An overview of osimertinib resistance mediated by EGFR mutations in non-small cell lung cancer. Cell Commun Signal. 21(71)2023.PubMed/NCBI View Article : Google Scholar | |
Kumar S and Agrawal R: Next generation tyrosine kinase inhibitor (TKI): Afatinib. Recent Pat Anticancer Drug Discov. 9:382–393. 2014.PubMed/NCBI View Article : Google Scholar | |
Blaquier JB, Ortiz-Cuaran S, Ricciuti B, Mezquita L, Cardona AF and Recondo G: Tackling osimertinib resistance in EGFR-mutant non-small cell lung cancer. Clin Cancer Res. 29:3579–3591. 2023.PubMed/NCBI View Article : Google Scholar | |
Du X, Yang B, An Q, Assaraf YG, Cao X and Xia J: Acquired resistance to third-generation EGFR-TKIs and emerging next-generation EGFR inhibitors. Innovation (Camb). 2(100103)2021.PubMed/NCBI View Article : Google Scholar | |
Iqbal N and Iqbal N: Imatinib: A breakthrough of targeted therapy in cancer. Chemother Res Pract. 2014(357027)2014.PubMed/NCBI View Article : Google Scholar | |
Sacha T: Imatinib in chronic myeloid leukemia: An overview. Mediterr J Hematol Infect Dis. 6(e2014007)2014.PubMed/NCBI View Article : Google Scholar | |
Lopes LF and Bacchi CE: Imatinib treatment for gastrointestinal stromal tumour (GIST). J Cell Mol Med. 14:42–50. 2010.PubMed/NCBI View Article : Google Scholar | |
Hochhaus A, Larson RA, Guilhot F, Radich JP, Branford S, Hughes TP, Baccarani M, Deininger MW, Cervantes F, Fujihara S, et al: Long-term outcomes of imatinib treatment for chronic myeloid leukemia. N Engl J Med. 376:917–927. 2017.PubMed/NCBI View Article : Google Scholar | |
Gollob JA, Wilhelm S, Carter C and Kelley SL: Role of Raf kinase in cancer: Therapeutic potential of targeting the Raf/MEK/ERK signal transduction pathway. Semin Oncol. 33:392–406. 2006.PubMed/NCBI View Article : Google Scholar | |
Escudier B, Szczylik C, Eisen T, Stadler WM, Schwartz B, Shan M and Bukowski RM: Randomized phase III trial of the Raf kinase and VEGFR inhibitor sorafenib (BAY 43-9006) in patients with advanced renal cell carcinoma (RCC). J Clin Oncol. 23 (Suppl 16)(LBA451)2005. | |
Ramakrishnan V, Timm M, Haug JL, Kimlinger TK, Wellik LE, Witzig TE, Rajkumar SV, Adjei AA and Kumar S: Sorafenib, a dual Raf kinase/vascular endothelial growth factor receptor inhibitor has significant anti-myeloma activity and synergizes with common anti-myeloma drugs. Oncogene. 29:1190–1202. 2010.PubMed/NCBI View Article : Google Scholar | |
Wilhelm SM, Adnane L, Newell P, Villanueva A, Llovet JM and Lynch M: Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling. Mol Cancer Ther. 7:3129–3140. 2008.PubMed/NCBI View Article : Google Scholar | |
Liu L, Cao Y, Chen C, Zhang X, McNabola A, Wilkie D, Wilhelm S, Lynch M and Carter C: Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Res. 66:11851–11858. 2006.PubMed/NCBI View Article : Google Scholar | |
Pagano M, Sierra NM, Panebianco M, Rossi G, Gnoni R, Bisagni G and Boni C: Sorafenib efficacy in thymic carcinomas seems not to require c-KIT or PDGFR-alpha mutations. Anticancer Res. 34:5105–5110. 2014.PubMed/NCBI | |
Adnane L, Trail PA, Taylor I and Wilhelm SM: Sorafenib (BAY 43-9006, Nexavar®), a dual-action inhibitor that targets RAF/MEK/ERK pathway in tumor cells and tyrosine kinases VEGFR/PDGFR in tumor vasculature. Methods Enzymol. 407:597–612. 2006.PubMed/NCBI View Article : Google Scholar | |
Woo HY and Heo J: Sorafenib in liver cancer. Expert Opin Pharmacother. 13:1059–1067. 2012.PubMed/NCBI View Article : Google Scholar | |
Zhu YJ, Zheng B, Wang HY and Chen L: New knowledge of the mechanisms of sorafenib resistance in liver cancer. Acta Pharmacol Sin. 38:614–622. 2017.PubMed/NCBI View Article : Google Scholar | |
Cheng Z, Wei-Qi J and Jin D: New insights on sorafenib resistance in liver cancer with correlation of individualized therapy. Biochim Biophys Acta Rev Cancer. 1874(188382)2020.PubMed/NCBI View Article : Google Scholar | |
Gauthier A and Ho M: Role of sorafenib in the treatment of advanced hepatocellular carcinoma: An update. Hepatol Res. 43:147–154. 2013.PubMed/NCBI View Article : Google Scholar | |
Porta C, Paglino C, Imarisio I and Ferraris E: Sorafenib tosylate in advanced kidney cancer: Past, present and future. Anticancer Drugs. 20:409–415. 2009.PubMed/NCBI View Article : Google Scholar | |
Larkin JM and Eisen T: Renal cell carcinoma and the use of sorafenib. Ther Clin Risk Manag. 2:87–98. 2006.PubMed/NCBI | |
Bukowski R, Cella D, Gondek K and Escudier B: Sorafenib TARGETs Clinical Trial Group. Effects of sorafenib on symptoms and quality of life: Results from a large randomized placebo-controlled study in renal cancer. Am J Clin Oncol. 30:220–227. 2007.PubMed/NCBI View Article : Google Scholar | |
Szczylik C, Cella D, Eisen T, Shah S, Laferriere N, Scheuring U and Escudier BJ: Comparison of kidney cancer symptoms and quality of life (QoL) in renal cell cancer (RCC) patients (pts) receiving sorafenib vs interferon-α (IFN). J Clin Oncol. 26 (Suppl 15)(S9603)2008. | |
Strumberg D: Sorafenib for the treatment of renal cancer. Expert Opin Pharmacother. 13:407–419. 2012.PubMed/NCBI View Article : Google Scholar | |
Capdevila J, Iglesias L, Halperin I, Segura Á, Martínez-Trufero J, Vaz MÁ, Corral J, Obiols G, Grande E, Grau JJ and Tabernero J: Sorafenib in metastatic thyroid cancer. Endocr Relat Cancer. 19:209–216. 2012.PubMed/NCBI View Article : Google Scholar | |
Pitoia F and Jerkovich F: Selective use of sorafenib in the treatment of thyroid cancer. Drug Des Devel Ther. 10:1119–1131. 2016.PubMed/NCBI View Article : Google Scholar | |
Thomas L, Lai SY, Dong W, Feng L, Dadu R, Regone RM and Cabanillas ME: Sorafenib in metastatic thyroid cancer: A systematic review. Oncologist. 19:251–258. 2014.PubMed/NCBI View Article : Google Scholar | |
Chen P, Wang J, Yao Y, Qu Y, Ji M and Hou P: . Targeting DUSP5 suppresses malignant phenotypes of BRAF-mutant thyroid cancer cells and improves their response to sorafenib. Endocrine. 85:1268–1277. 2024.PubMed/NCBI View Article : Google Scholar | |
Pereira A, Parra D, Alvarez M and Rincon O: Response to sorafenib in a locally advanced oncocytic cell carcinoma of the thyroid. BMJ Case Rep. 17(e257738)2024.PubMed/NCBI View Article : Google Scholar | |
Yun KM and Cohen EEW: An era of advances in systemic therapies for advanced thyroid cancer. JCO Oncol Pract. 20:899–906. 2024.PubMed/NCBI View Article : Google Scholar | |
Ek F, Blom K, Selvin T, Rudfeldt J, Andersson C, Senkowski W, Brechot C, Nygren P, Larsson R, Jarvius M and Fryknäs M: Sorafenib and nitazoxanide disrupt mitochondrial function and inhibit regrowth capacity in three-dimensional models of hepatocellular and colorectal carcinoma. Sci Rep. 12(8943)2022.PubMed/NCBI View Article : Google Scholar | |
Bielecka ZF, Malinowska A, Brodaczewska KK, Klemba A, Kieda C, Krasowski P, Grzesiuk E, Piwowarski J, Czarnecka AM and Szczylik C: Hypoxic 3D in vitro culture models reveal distinct resistance processes to TKIs in renal cancer cells. Cell Biosci. 7(71)2017.PubMed/NCBI View Article : Google Scholar | |
Yueh PF, Chiang CS, Tsai IJ, Tseng YL, Chen HR, Lan KL and Hsu FT: A multifunctional PEGylated liposomal-encapsulated sunitinib enhancing autophagy, immunomodulation, and safety in renal cell carcinoma. J Nanobiotechnology. 22(459)2024.PubMed/NCBI View Article : Google Scholar | |
Yan XQ, Ye MJ, Zou Q, Chen P, He ZS, Wu B, He DL, He CH, Xue XY, Ji ZG, et al: Toripalimab plus axitinib versus sunitinib as first-line treatment for advanced renal cell carcinoma: RENOTORCH, a randomized, open-label, phase III study. Ann Oncol. 35:190–199. 2024.PubMed/NCBI View Article : Google Scholar | |
Motzer RJ, Porta C, Eto M, Powles T, Grünwald V, Hutson TE, Alekseev B, Rha SY, Merchan J, Goh JC, et al: Lenvatinib plus pembrolizumab versus sunitinib in first-line treatment of advanced renal cell carcinoma: Final prespecified overall survival analysis of CLEAR, a Phase III Study. J Clin Oncol. 42:1222–1228. 2024.PubMed/NCBI View Article : Google Scholar | |
Uhlig A, Bergmann L, Bögemann M, Fischer T, Goebell PJ, Leitsmann M, Reichert M, Rink M, Schlack K, Trojan L, et al: Sunitinib for metastatic renal cell carcinoma: Real-world data from the STAR-TOR registry and detailed literature review. Urol Int. 108:198–210. 2024.PubMed/NCBI View Article : Google Scholar | |
Heinrich MC, Jones RL, George S, Gelderblom H, Schöffski P, von Mehren M, Zalcberg JR, Kang YK, Razak AA, Trent J, et al: Ripretinib versus sunitinib in gastrointestinal stromal tumor: ctDNA biomarker analysis of the phase 3 INTRIGUE trial. Nat Med. 30:498–506. 2024.PubMed/NCBI View Article : Google Scholar | |
Li J, Zhang J, Zhang Y, Qiu H, Zhou Y, Zhou Y, Zhang X, Zhou Y, Zhu Y, Li Y, et al: Efficacy and safety of ripretinib vs. sunitinib in patients with advanced gastrointestinal stromal tumor previously treated with imatinib: A phase 2, multicenter, randomized, open-label study in China. Eur J Cancer. 196(113439)2024.PubMed/NCBI View Article : Google Scholar | |
Giraud EL, Westerdijk K, van der Kleij MBA, Guchelaar NAD, Meertens M, Bleckman RF, Rieborn A, Mohammadi M, Roets E, Mathijssen RHJ, et al: Sunitinib for the treatment of metastatic gastrointestinal stromal tumors: The effect of TDM-guided dose optimization on clinical outcomes. ESMO Open. 9(103477)2024.PubMed/NCBI View Article : Google Scholar | |
Hopkins TG, Marples M and Stark D: Sunitinib in the management of gastrointestinal stromal tumours (GISTs). Eur J Surg Oncol. 34:844–850. 2008.PubMed/NCBI View Article : Google Scholar | |
Mulet-Margalef N and Garcia-del-Muro X: Sunitinib in the treatment of gastrointestinal stromal tumor: Patient selection and perspectives. OncoTargets Ther. 9:7573–7582. 2016.PubMed/NCBI View Article : Google Scholar | |
Le Tourneau C, Raymond E and Faivre S: Sunitinib: A novel tyrosine kinase inhibitor. A brief review of its therapeutic potential in the treatment of renal carcinoma and gastrointestinal stromal tumors (GIST). Ther Clin Risk Manag. 3:341–348. 2007.PubMed/NCBI View Article : Google Scholar | |
Raymond E, Hammel P, Dreyer C, Maatescu C, Hentic O, Ruszniewski P and Faivre S: Sunitinib in pancreatic neuroendocrine tumors. Target Oncol. 7:117–125. 2012.PubMed/NCBI View Article : Google Scholar | |
Kulke MH, Lenz HJ, Meropol NJ, Posey J, Ryan DP, Picus J, Bergsland E, Stuart K, Tye L, Huang X, et al: Activity of sunitinib in patients with advanced neuroendocrine tumors. J Clin Oncol. 26:3403–3410. 2008.PubMed/NCBI View Article : Google Scholar | |
Raymond E, Dahan L, Raoul JL, Bang YJ, Borbath I, Lombard-Bohas C, Valle J, Metrakos P, Smith D, Vinik A, et al: Sunitinib malate for the treatment of pancreatic neuroendocrine tumors. N Engl J Med. 364:501–513. 2011.PubMed/NCBI View Article : Google Scholar | |
Valle JW, Borbath I, Rosbrook B, Fernandez K and Raymond E: Sunitinib in patients with pancreatic neuroendocrine tumors: Update of safety data. Future Oncol. 15:1219–1230. 2019.PubMed/NCBI View Article : Google Scholar | |
Polena H, Creuzet J, Dufies M, Sidibé A, Khalil-Mgharbel A, Salomon A, Deroux A, Quesada JL, Roelants C, Filhol O, et al: The tyrosine-kinase inhibitor sunitinib targets vascular endothelial (VE)-cadherin: A marker of response to antitumoural treatment in metastatic renal cell carcinoma. Br J Cancer. 118:1179–1188. 2018.PubMed/NCBI View Article : Google Scholar | |
Rausch M, Rutz A, Allard PM, Delucinge-Vivier C, Docquier M, Dormond O, Wolfender JL and Nowak-Sliwinska P: Molecular and functional analysis of sunitinib-resistance induction in human renal cell carcinoma cells. Int J Mol Sci. 22(6467)2021.PubMed/NCBI View Article : Google Scholar | |
Stratmann AT, Fecher D, Wangorsch G, Göttlich C, Walles T, Walles H, Dandekar T, Dandekar G and Nietzer SL: Establishment of a human 3D lung cancer model based on a biological tissue matrix combined with a Boolean in silico model. Mol Oncol. 8:351–365. 2014.PubMed/NCBI View Article : Google Scholar | |
Liu B, Chen D, Chen S, Saber A and Haisma H: Transcriptional activation of cyclin D1 via HER2/HER3 contributes to EGFR-TKI resistance in lung cancer. Biochem Pharmacol. 178(114095)2020.PubMed/NCBI View Article : Google Scholar | |
Jacobi N, Seeboeck R, Hofmann E, Schweiger H, Smolinska V, Mohr T, Boyer A, Sommergruber W, Lechner P, Pichler-Huebschmann C, et al: Organotypic three-dimensional cancer cell cultures mirror drug responses in vivo: Lessons learned from the inhibition of EGFR signaling. Oncotarget. 8:107423–107440. 2017.PubMed/NCBI View Article : Google Scholar | |
Zheng Q, Dong H, Mo J, Zhang Y, Huang J, Ouyang S, Shi S, Zhu K, Qu X, Hu W, et al: A novel STAT3 inhibitor W2014-S regresses human non-small cell lung cancer xenografts and sensitizes EGFR-TKI acquired resistance. Theranostics. 11:824–840. 2021.PubMed/NCBI View Article : Google Scholar | |
Hoque M, Elmaghrabi YA, Köse M, Beevi SS, Jose J, Meneses-Salas E, Blanco-Muñoz P, Conway JRW, Swarbrick A, Timpson P, et al: Annexin A6 improves anti-migratory and anti-invasive properties of tyrosine kinase inhibitors in EGFR overexpressing human squamous epithelial cells. FEBS J. 287:2961–2978. 2020.PubMed/NCBI View Article : Google Scholar | |
Fu C, Dong J, Zhang J, Li X, Zuo S, Zhang H, Gao S and Chen L: Using three-dimensional model-based tumour volume change to predict the symptom improvement in patients with renal cell cancer. 3 Biotech. 14(148)2024.PubMed/NCBI View Article : Google Scholar | |
Liu Y, Dai X, Jiang S, Qahar M, Fang C, Guo D, Wang L, Ma S and Huang L: Targeted Co-delivery of gefitinib and rapamycin by aptamer-modified nanoparticles overcomes EGFR-TKI Resistance in NSCLC via Promoting Autophagy. Int J Mol Sci. 23(8025)2022.PubMed/NCBI View Article : Google Scholar | |
Kim D, Bach DH, Fan YH, Luu TT, Hong JY, Park HJ and Lee SK: AXL degradation in combination with EGFR-TKI can delay and overcome acquired resistance in human non-small cell lung cancer cells. Cell Death Dis. 10(361)2019.PubMed/NCBI View Article : Google Scholar | |
Hou R, Li X, Xiong J, Shen T, Yu W, Schwartz LH, Zhao B, Zhao J and Fu X: Predicting tyrosine kinase inhibitor treatment response in stage IV lung adenocarcinoma patients with EGFR mutation using model-based deep transfer learning. Front Oncol. 11(679764)2021.PubMed/NCBI View Article : Google Scholar | |
Ko J, Meyer AN, Haas M and Donoghue DJ: Characterization of FGFR signaling in prostate cancer stem cells and inhibition via TKI treatment. Oncotarget. 12:22–36. 2021.PubMed/NCBI View Article : Google Scholar | |
Kim SY, Kim SM, Lim S, Lee JY, Choi SJ, Yang SD, Yun MR, Kim CG, Gu SR, Park C, et al: Modeling clinical responses to targeted therapies by patient-derived organoids of advanced lung adenocarcinoma. Clin Cancer Res. 27:4397–4409. 2021.PubMed/NCBI View Article : Google Scholar | |
Darré H, Masson P, Nativel A, Villain L, Lefaudeux D, Couty C, Martin B, Jacob E, Duruisseaux M, Palgen JL, et al: Comparing the efficacy of two generations of EGFR-TKIs: An integrated drug-disease mechanistic model approach in EGFR-mutated lung adenocarcinoma. Biomedicines. 12(704)2024.PubMed/NCBI View Article : Google Scholar | |
Zhao X, Zhang X, Chen H, Bao H, Wu X, Wang H, Bao H, Pang J, Wang S and Wang J: Mechanisms of resistance to tyrosine kinase inhibitors in ROS1 fusion-positive nonsmall cell lung cancer. Clin Chem. 70:629–641. 2024.PubMed/NCBI View Article : Google Scholar | |
Hirschhaeuser F, Menne H, Dittfeld C, West J, Mueller-Klieser W and Kunz-Schughart LA: Multicellular tumor spheroids: An underestimated tool is catching up again. J Biotechnol. 148:3–15. 2010.PubMed/NCBI View Article : Google Scholar | |
Wenzel C, Riefke B, Gründemann S, Krebs A, Christian S, Prinz F, Osterland M, Golfier S, Räse S, Ansari N, et al: 3D high-content screening for the identification of compounds that target cells in dormant tumor spheroid regions. Exp Cell Res. 323:131–143. 2014.PubMed/NCBI View Article : Google Scholar | |
Imamura Y, Mukohara T, Shimono Y, Funakoshi Y, Chayahara N, Toyoda M, Kiyota N, Takao S, Kono S, Nakatsura T and Minami H: Comparison of 2D- and 3D-culture models as drug-testing platforms in breast cancer. Oncol Rep. 33:1837–1843. 2015.PubMed/NCBI View Article : Google Scholar | |
Hashimoto K, Nishimura S, Ito T, Oka N, Kakinoki R and Akagi M: Clinicopathological assessment of cancer/testis antigens NY-ESO-1 and MAGE-A4 in osteosarcoma. Eur J Histochem. 66(3377)2022.PubMed/NCBI View Article : Google Scholar | |
Leeper AD, Farrell J, Williams LJ, Thomas JS, Dixon JM, Wedden SE, Harrison DJ and Katz E: Determining tamoxifen sensitivity using primary breast cancer tissue in collagen-based three-dimensional culture. Biomaterials. 33:907–915. 2012.PubMed/NCBI View Article : Google Scholar | |
Andolfi C, Bartolini C, Morales E, Gündoğdu B, Puhr M, Guzman J, Wach S, Taubert H, Aigner A, Eder IE, et al: MED12 and CDK8/19 modulate androgen receptor activity and enzalutamide response in prostate cancer. Endocrinology. 165(bqae114)2024.PubMed/NCBI View Article : Google Scholar | |
Jenkins RW, Barbie DA and Flaherty KT: Mechanisms of resistance to immune checkpoint inhibitors. Br J Cancer. 118:9–16. 2018.PubMed/NCBI View Article : Google Scholar | |
Hasin Y, Seldin M and Lusis A: Multi-omics approaches to disease. Genome Biol. 18(83)2017.PubMed/NCBI View Article : Google Scholar | |
Libbrecht MW and Noble WS: Machine learning applications in genetics and genomics. Nat Rev Genet. 16:321–332. 2015.PubMed/NCBI View Article : Google Scholar | |
Wang H, Brown PC, Chow ECY, Ewart L, Ferguson SS, Fitzpatrick S, Freedman BS, Guo GL, Hedrich W, Heyward S, et al: 3D cell culture models: Drug pharmacokinetics, safety assessment, and regulatory consideration. Clin Transl Sci. 14:1659–1680. 2021.PubMed/NCBI View Article : Google Scholar |