Lercanidipine attenuates angiotensin II-induced cardiomyocyte hypertrophy by blocking calcineurin-NFAT3 and CaMKII-HDAC4 signaling
- Authors:
- Published online on: August 10, 2017 https://doi.org/10.3892/mmr.2017.7211
- Pages: 4545-4552
-
Copyright: © Chen et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
Metrics: Total
Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Abstract
Previous studies have demonstrated that lercanidipine, a calcium channel blocker, may protect against cardiac hypertrophy; however, the underlying mechanisms remain unclear. In the present study, the effects of lercanidipine on hypertrophy and the mechanisms involved were investigated. Cardiomyocytes isolated from neonatal rats were cultured and treated with angiotensin II (Ang II) in the presence or absence of lercanidipine or tacrolimus (FK506, a calcineurin inhibitor). Reverse transcription‑quantitative polymerase chain reaction was used to assess the mRNA expression of genes of interest, whereas the protein expression of calcium‑dependent signaling molecules was detected using western blot analysis. In addition, the cell surface area and the nuclear translocation of target proteins were evaluated using immunofluorescence. The results of the present study demonstrated that lercanidipine and FK506 inhibited Ang II‑induced cardiomyocyte hypertrophy, as evidenced by decreases in fetal gene (atrial natriuretic peptide and brain natriuretic peptide) expression levels and cell surface area. Notably, lercanidipine suppressed Ang II‑induced activation of calcineurin A (CnA) and nuclear factor of activated T cells 3 (NFAT3). In addition, calcium/calmodulin‑dependent kinase II (CaMKII)‑histone deacetylase 4 (HDAC4) signaling was also inhibited by lercanidipine. In conclusion, the present study demonstrated that lercanidipine may ameliorate cardiomyocyte hypertrophy, possibly partially by blocking Cn-NFAT3 and CaMKII-HDAC4 signaling.