1
|
Parkin DM, Bray F, Ferlay J and Pisani P:
Global cancer statistics, 2002. CA Cancer J Clin. 55:74–108. 2005.
View Article : Google Scholar
|
2
|
Notani P: Epidemiology and prevention of
head and neck cancer: a global view. Contemporary Issues in Oral
Cancer. Saranath D: Oxford University Press; New Delhi: pp. 1–29.
2000
|
3
|
Nair U, Bartsch H and Nair J: Alert for an
epidemic of oral cancer due to use of the betel quid substitutes
gutkha and pan masala: a review of agents and causative mechanisms.
Mutagenesis. 19:251–262. 2004. View Article : Google Scholar : PubMed/NCBI
|
4
|
Akervall J: Genomic screening of head and
neck cancer and its implications for therapy planning. Eur Arch
Otorhinolaryngol. 263:297–304. 2006. View Article : Google Scholar : PubMed/NCBI
|
5
|
Hermsen M, Joenje H, Arwert F, et al:
Assessment of chromosomal gains and losses in oral squamous cell
carcinoma by comparative genomic hybridisation. Oral Oncol.
33:414–418. 1997. View Article : Google Scholar : PubMed/NCBI
|
6
|
Wolff E, Girod S, Liehr T, et al: Oral
squamous cell carcinomas are characterized by a rather uniform
pattern of genomic imbalances detected by comparative genomic
hybridisation. Oral Oncol. 34:186–190. 1998. View Article : Google Scholar
|
7
|
Weber R, Scheer M, Born I, et al:
Recurrent chromosomal imbalances detected in biopsy material from
oral premalignant and malignant lesions by combined tissue
microdissection, universal DNA amplification, and comparative
genomic hybridization. Am J Pathol. 153:295–303. 1998. View Article : Google Scholar
|
8
|
Okafuji M, Ita M, Hayatsu Y, Shinozaki F,
Oga A and Sasaki K: Identification of genetic aberrations in cell
lines from oral squamous cell carcinomas by comparative genomic
hybridization. J Oral Pathol Med. 28:241–250. 1999. View Article : Google Scholar : PubMed/NCBI
|
9
|
Okafuji M, Ita M, Oga A, et al: The
relationship of genetic aberrations detected by comparative genomic
hybridization to DNA ploidy and tumor size in human oral squamous
cell carcinomas. J Oral Pathol Med. 29:226–231. 2000. View Article : Google Scholar : PubMed/NCBI
|
10
|
Oga A, Kong G, Tae K, Lee Y and Sasaki K:
Comparative genomic hybridization analysis reveals 3q gain
resulting in genetic alteration in 3q in advanced oral squamous
cell carcinoma. Cancer Genet and Cytogenet. 127:24–29. 2001.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Lin S, Chen Y, Kao S, et al: Chromosomal
changes in betel-associated oral squamous cell carcinomas and their
relationship to clinical parameters. Oral Oncol. 38:266–273. 2002.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Hannen E, Macville M, Wienk S, et al:
Different chromosomal imbalances in metastasized and
nonmetastasized tongue carcinomas identified by comparative genomic
hybridization. Oral Oncol. 40:364–371. 2004. View Article : Google Scholar
|
13
|
Noutomi Y, Oga A, Uchida K, et al:
Comparative genomic hybridization reveals genetic progression of
oral squamous cell carcinoma from dysplasia via two different
tumourigenic pathways. J Pathol. 210:67–74. 2006. View Article : Google Scholar : PubMed/NCBI
|
14
|
Martin C, Reshmi S, Ried T, et al:
Chromosomal imbalances in oral squamous cell carcinoma: examination
of 31 cell lines and review of the literature. Oral Oncol.
44:369–382. 2008. View Article : Google Scholar : PubMed/NCBI
|
15
|
Pathare S, Schäffer A, Beerenwinkel N and
Mahimkar M: Construction of oncogenetic tree models reveals
multiple pathways of oral cancer progression. Int J Cancer.
124:2864–2871. 2009. View Article : Google Scholar : PubMed/NCBI
|
16
|
D’Souza G, Kreimer AR, Viscidi R, et al:
Case-control study of human papillomavirus and oropharyngeal
cancer. N Engl J Med. 356:1944–1956. 2007.PubMed/NCBI
|
17
|
Gillison ML: Human
papillomavirus-associated head and neck cancer is a distinct
epidemiologic, clinical, and molecular entity. Semin Oncol.
31:744–754. 2004. View Article : Google Scholar : PubMed/NCBI
|
18
|
Fakhry C, Westra WH, Li S, et al: Improved
survival of patients with human papillomavirus-positive head and
neck squamous cell carcinoma in a prospective clinical trial. J
Natl Cancer Inst. 100:261–269. 2008. View Article : Google Scholar : PubMed/NCBI
|
19
|
De Roda Husman AM, Walboomers JM, Meijer
CJ, et al: Analysis of cytomorphologically abnormal cervical
scrapes for the presence of 27 mucosotropic human papillomavirus
genotypes, using polymerase chain reaction. Int J Cancer.
56:802–806. 1994.
|
20
|
Khoja S, Ojwang P, Khan S, Okinda N,
Harania R and Ali S: Genetic analysis of HIV-1 subtypes in Nairobi,
Kenya. PLoS One. 3:e31912008. View Article : Google Scholar : PubMed/NCBI
|
21
|
Manoir SD, Schröck E, Bentz M, et al:
Quantitative analysis of comparative genomic hybridization.
Cytometry. 19:27–41. 1995. View Article : Google Scholar
|
22
|
Jeuken J, Sprenger S and Wesseling P:
Comparative genomic hybridization: practical guidelines. Diagn Mol
Pathol. 11:193–203. 2002. View Article : Google Scholar : PubMed/NCBI
|
23
|
Benjamini Y and Hochberg Y: Controlling
the false discovery rate: a practical and powerful approach to
multiple testing. J Roy Statist Soc Ser B. 57:289–300. 1995.
|
24
|
Cox DR: Regression models and life-tables.
J Roy Statist Soc Ser B. 34:187–220. 1972.
|
25
|
Schwarz G: Estimating the dimension of a
model. Ann Stat. 6:461–464. 1978. View Article : Google Scholar
|
26
|
Tibshirani R: The Lasso method for
variable selection in the Cox model. Statistics in Medicine.
16:385–395. 1997. View Article : Google Scholar : PubMed/NCBI
|
27
|
Park MY and Hastie T: L1-regularization
path algorithm for generalized linear models. J Roy Statist Soc Ser
B. 69:659–677. 2007. View Article : Google Scholar
|
28
|
Ha PK, Pai SI, Westra WH, et al: Real-time
quantitative PCR demonstrates low prevalence of human
papillomavirus type 16 in premalignant and malignant lesions of the
oral cavity. Clin Cancer Res. 8:1203–1209. 2002.PubMed/NCBI
|
29
|
Klussmann JP, Weissenborn SJ, Wieland U,
et al: Prevalence, distribution, and viral load of human
papillomavirus 16 DNA in tonsillar carcinomas. Cancer.
92:2875–2884. 2001. View Article : Google Scholar : PubMed/NCBI
|
30
|
Klussmann JP, Mooren JJ, Lehnen M, et al:
Genetic signatures of HPV-related and unrelated oropharyngeal
carcinoma and their prognostic implications. Clin Cancer Res.
15:1779–1786. 2009. View Article : Google Scholar : PubMed/NCBI
|
31
|
Gebhart E, Ries J, Wiltfang J, Liehr T and
Efferth T: Genomic gain of the epidermal growth factor receptor
harboring band 7p12 is part of a complex pattern of genomic
imbalances in oral squamous cell carcinomas. Arch Med Res.
35:385–394. 2004. View Article : Google Scholar : PubMed/NCBI
|
32
|
Kalyankrishna S and Grandis J: Epidermal
growth factor receptor biology in head and neck cancer. J Clin
Oncol. 24:2666–2672. 2006. View Article : Google Scholar : PubMed/NCBI
|
33
|
Ishwad C, Shuster M, Bockmuhl U, et al:
Frequent allelic loss and homozygous deletion in chromosome band
8p23 in oral cancer. Int J Cancer. 80:25–31. 1999. View Article : Google Scholar : PubMed/NCBI
|
34
|
Zhou X, Temam S, Oh M, et al: Global
expression-based classification of lymph node metastasis and
extracapsular spread of oral tongue squamous cell carcinoma.
Neoplasia. 8:925–932. 2006. View Article : Google Scholar : PubMed/NCBI
|
35
|
Donnellen R and Chetty R: Cyclin D1 and
human neoplasia. J Clin Pathol. 51:1–7. 1998.
|
36
|
Staibano S, Migonogua M, Muzio L, Alberti
L, Natale E and Lucariello A: Overexpression of cyclin D1, bcl-2,
and bax proteins, proliferating cell nuclear antigen, and
DNA-ploidy in squamous cell carcinoma of the oral cavity. Hum
Pathol. 29:1189–1194. 1998. View Article : Google Scholar : PubMed/NCBI
|
37
|
Angadi P and Krishnapillai R: Cyclin D1
expression in oral squamous cell carcinoma and verrucous carcinoma:
correlation with histological differentiation. Oral Surg Oral Med
Oral Pathol Oral Radiol and Endod. 103:30–35. 2007. View Article : Google Scholar : PubMed/NCBI
|
38
|
Mate J, Ariza A, Aracil C, Lopez D, Isama
T and Piteira J: Cyclin D1 overexpression in non-small cell lung
carcinoma: correlation with ki-67 labelling index and poor
cytoplasmic differentiation. J Pathol. 80:395–399. 1996. View Article : Google Scholar : PubMed/NCBI
|
39
|
Shapex S, Rhee J, Spicer D and Lassar A:
Inhibition of myogenic differentiation in proliferating myoblasts
by cyclin D1-dependent kinase. Science. 267:1022–1024. 1995.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Bockmuhl U, Schluns K, Kuchler I, Petersen
S and Petersen I: Genetic imbalances with impact on survival in
head and neck cancer patients. Am J Pathol. 157:369–375. 2000.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Wreesmann VB, Shi W, Thaler HT, et al:
Identification of novel prognosticators of outcome in squamous cell
carcinoma of the head and neck. J Clin Oncol. 22:3965–3972. 2004.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Miyamoto R, Uzawa N, Nagaoka S, Nakakuki
K, Hirata Y and Amagasa T: Potential marker of oral squamous cell
carcinoma aggressiveness detected by fluorescence in situ
hybridization in fine-needle aspiration biopsies. Cancer.
95:2152–2159. 2002. View Article : Google Scholar : PubMed/NCBI
|
43
|
Pearlstein R, Benninger M, Carey T, et al:
Loss of 18q predicts poor survival of patients with squamous cell
carcinoma of the head and neck. Genes Chromosomes Cancer.
21:333–339. 1998. View Article : Google Scholar : PubMed/NCBI
|
44
|
Takebayashi S, Hickson A, Ogawa T, et al:
Loss of chromosome arm 18q with tumor progression in head and neck
squamous cancer. Genes Chromosomes Cancer. 41:145–154. 2004.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Zhang M, Volpert O, Shi Y and Bouck N:
Maspin is an angiogenesis inhibitor. Nat Med. 6:196–199. 2000.
View Article : Google Scholar
|
46
|
Xia W, Lau Y and Hu M: High tumoral maspin
expression is associated with improved survival of patients with
oral squamous cell carcinoma. Oncogene. 19:2398–2403. 2000.
View Article : Google Scholar : PubMed/NCBI
|