1
|
Piver MS: Prophylactic oophorectomy:
reducing the U.S. death rate from epithelial ovarian cancer. A
continuing debate. Oncologist. 1:326–330. 1996.PubMed/NCBI
|
2
|
Kennedy AW, Biscotti CV, Hart WR and
Webster KD: Ovarian clear cell adenocarcinoma. Gynecol Oncol.
32:342–349. 1998. View Article : Google Scholar
|
3
|
Ryu SY, Park SI, Nam BH, et al: Prognostic
significance of histological grade in clear-cell carcinoma of the
ovary: a retrospective study of Korean Gynecologic Oncology Group.
Ann Oncol. 20:1032–1036. 2009. View Article : Google Scholar : PubMed/NCBI
|
4
|
Viganó P, Somigliana E, Chiodo I, Abbiati
A and Vercellini P: Molecular mechanisms and biological
plausibility underlying the malignant transformation of
endometriosis: a critical analysis. Hum Reprod Update. 12:77–89.
2006.PubMed/NCBI
|
5
|
Kobayashi H, Sumimoto K, Moniwa N, et al:
Risk of developing ovarian cancer among women with ovarian
endometrioma: a cohort study in Shizuoka, Japan. Int J Gynecol
Cancer. 17:37–43. 2007. View Article : Google Scholar : PubMed/NCBI
|
6
|
Bell DA: Origins and molecular pathology
of ovarian cancer. Mod Pathol. 18(Suppl 2): S19–S32. 2005.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Jiang X, Hitchcock A, Bryan EJ, et al:
Microsatellite analysis of endometriosis reveals loss of
heterozygosity at candidate ovarian tumor suppressor gene loci.
Cancer Res. 56:3534–3539. 1996.PubMed/NCBI
|
8
|
Kobayashi H, Kajiwara H, Kanayama S, et
al: Molecular pathogenesis of endometriosis-associated clear cell
carcinoma of the ovary (Review). Oncol Rep. 22:233–240.
2009.PubMed/NCBI
|
9
|
Yoo AS and Crabtree GR: ATP-dependent
chromatin remodeling in neural development. Curr Opin Neurobiol.
19:120–126. 2009. View Article : Google Scholar : PubMed/NCBI
|
10
|
Weissman B and Knudsen KE: Hijacking the
chromatin remodeling machinery: impact of SWI/SNF perturbations in
cancer. Cancer Res. 69:8223–8230. 2009. View Article : Google Scholar : PubMed/NCBI
|
11
|
Osipovich OA, Subrahmanyam R, Pierce S,
Sen R and Oltz EM: Cutting edge: SWI/SNF mediates antisense Igh
transcription and locus-wide accessibility in B cell precursors. J
Immunol. 183:1509–1513. 2009. View Article : Google Scholar : PubMed/NCBI
|
12
|
Kundu S and Peterson CL: Role of chromatin
states in transcriptional memory. Biochim Biophys Acta.
1790:445–455. 2009. View Article : Google Scholar : PubMed/NCBI
|
13
|
Rodriguez-Nieto S and Sanchez-Cespedes M:
BRG1 and LKB1: tales of two tumor suppressor genes on chromosome
19p and lung cancer. Carcinogenesis. 30:547–554. 2009. View Article : Google Scholar : PubMed/NCBI
|
14
|
Abbas T and Dutta A: p21 in cancer:
intricate networks and multiple activities. Nat Rev Cancer.
9:400–414. 2009. View
Article : Google Scholar : PubMed/NCBI
|
15
|
Toyota M and Suzuki H: Epigenetic drivers
of genetic alterations. Adv Genet. 70:309–323. 2010. View Article : Google Scholar : PubMed/NCBI
|
16
|
Fan D, Ma C and Zhang H: The molecular
mechanisms that underlie the tumor suppressor function of LKB1.
Acta Biochim Biophys Sin (Shanghai). 41:97–107. 2009. View Article : Google Scholar : PubMed/NCBI
|
17
|
Hess J, Angel P and Schorpp-Kistner M:
AP-1 subunits: quarrel and harmony among siblings. J Cell Sci.
117:5965–5973. 2004. View Article : Google Scholar : PubMed/NCBI
|
18
|
Hydbring P and Larsson LG: Cdk2: a key
regulator of the senescence control function of Myc. Aging.
2:244–250. 2010.PubMed/NCBI
|
19
|
Bogliolo M, Cabré O, Callén E, et al: The
Fanconi anaemia genome stability and tumour suppressor network.
Mutagenesis. 17:529–538. 2002. View Article : Google Scholar : PubMed/NCBI
|
20
|
Sansam CG and Roberts CW: Epigenetics and
cancer: altered chromatin remodeling via Snf5 loss leads to
aberrant cell cycle regulation. Cell Cycle. 5:621–624. 2006.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Watanabe H, Mizutani T, Haraguchi T, et
al: SWI/SNF complex is essential for NRSF-mediated suppression of
neuronal genes in human nonsmall cell lung carcinoma cell lines.
Oncogene. 25:470–479. 2006.PubMed/NCBI
|
22
|
Luo B, Cheung HW, Subramanian A, et al:
Highly parallel identification of essential genes in cancer cells.
Proc Natl Acad Sci USA. 105:20380–20385. 2008. View Article : Google Scholar : PubMed/NCBI
|
23
|
Crow E, Du Z and Li L: New insights into
prion biology from the novel [SWI+] system. Prion.
2:141–144. 2008.
|
24
|
Mertens F, Johansson B, Höglund M and
Mitelman F: Chromosomal imbalance maps of malignant solid tumors: a
cytogenetic survey of 3185 neoplasms. Cancer Res. 57:2765–2780.
1997.PubMed/NCBI
|
25
|
Nagl NG Jr, Patsialou A, Haines DS, et al:
The p270 (ARID1A/SMARCF1) subunit of mammalian SWI/SNF-related
complexes is essential for normal cell cycle arrest. Cancer Res.
65:9236–9244. 2005. View Article : Google Scholar : PubMed/NCBI
|
26
|
Wang X, Nagl NG Jr, Flowers S, et al:
Expression of p270 (ARID1A), a component of human SWI/SNF
complexes, in human tumors. Int J Cancer. 112:6362004. View Article : Google Scholar : PubMed/NCBI
|
27
|
Wiegand KC, Shah SP, Al-Agha OM, et al:
ARID1A mutations in endometriosis-associated ovarian carcinomas. N
Engl J Med. 363:1532–1543. 2010. View Article : Google Scholar : PubMed/NCBI
|
28
|
Jones S, Wang TL, Shih IeM, et al:
Frequent mutations of chromatin remodeling gene ARID1A in ovarian
clear cell carcinoma. Science. 330:228–231. 2010. View Article : Google Scholar : PubMed/NCBI
|
29
|
Wilsker D, Patsialou A, Dallas PB and
Moran E: ARID proteins: a diverse family of DNA binding proteins
implicated in the control of cell growth, differentiation, and
development. Cell Growth Differ. 13:95–106. 2002.PubMed/NCBI
|
30
|
Li XS, Trojer P, Matsumura T, Treisman JE
and Tanese N: Mammalian SWI/SNF – a subunit BAF250/ARID1 is an E3
ubiquitin ligase that targets histone H2B. Mol Cell Biol.
30:1673–1688. 2010.
|
31
|
Gilbert PM, Mouw JK, Unger MA, et al:
HOXA9 regulates BRCA1 expression to modulate human breast tumor
phenotype. J Clin Invest. 120:1535–1550. 2010. View Article : Google Scholar : PubMed/NCBI
|
32
|
Dehennaut V and Leprince D: Implication of
HIC1 (hypermethylated in cancer 1) in the DNA damage response. Bull
Cancer. 96:E66–E72. 2009.PubMed/NCBI
|
33
|
Van Rechem C, Boulay G and Leprince D:
HIC1 interacts with a specific subunit of SWI/SNF complexes,
ARID1A/BAF250A. Biochem Biophys Res Commun. 385:586–590.
2009.PubMed/NCBI
|
34
|
Iaquinta PJ and Lees JA: Life and death
decisions by the E2F transcription factors. Curr Opin Cell Biol.
19:649–657. 2007. View Article : Google Scholar : PubMed/NCBI
|
35
|
Ma K, Araki K, Ichwan SJ, et al:
E2FBP1/DRIL1, an AT-rich interaction domain-family transcription
factor, is regulated by p53. Mol Cancer Res. 1:438–444.
2003.PubMed/NCBI
|
36
|
Kim YT and Zhao M: Aberrant cell cycle
regulation in cervical carcinoma. Yonsei Med J. 46:597–613. 2005.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Bourdon JC: p53 and its isoforms in
cancer. Br J Cancer. 97:277–282. 2007. View Article : Google Scholar : PubMed/NCBI
|
38
|
Staehling-Hampton K, Ciampa PJ, Brook A
and Dyson N: A genetic screen for modifiers of E2F in
Drosophila melanogaster. Genetics. 153:275–287.
1999.PubMed/NCBI
|
39
|
Roesch A, Mueller AM, Stempfl T, et al:
RBP2-H1/JARID1B is a transcriptional regulator with a tumor
suppressive potential in melanoma cells. Int J Cancer.
122:1047–1057. 2008. View Article : Google Scholar : PubMed/NCBI
|
40
|
Zorn KK, Bonome T, Gangi L, et al: Gene
expression profiles of serous, endometrioid, and clear cell
subtypes of ovarian and endometrial cancer. Clin Cancer Res.
11:6422–6430. 2005. View Article : Google Scholar : PubMed/NCBI
|
41
|
Gnarra JR, Tory K, Weng Y, et al:
Mutations of the VHL tumour suppressor gene in renal carcinoma. Nat
Genet. 7:85–90. 1994. View Article : Google Scholar : PubMed/NCBI
|
42
|
Hacker KE, Lee CM and Rathmell WK: VHL
type 2B mutations retain VBC complex form and function. PLoS One.
3:E38012008. View Article : Google Scholar : PubMed/NCBI
|
43
|
Vodermaier HC: APC/C and SCF: controlling
each other and the cell cycle. Curr Biol. 14:R787–R796. 2004.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Clark PE: The role of VHL in clear-cell
renal cell carcinoma and its relation to targeted therapy. Kidney
Int. 76:939–945. 2009. View Article : Google Scholar : PubMed/NCBI
|
45
|
Beisel C, Imhof A, Greene J, Kremmer E and
Sauer F: Histone methylation by the Drosophila epigenetic
transcriptional regulator Ash1. Nature. 419:857–862.
2002.PubMed/NCBI
|
46
|
Ezhkova E and Tansey WP: Proteasomal
ATPases link ubiquitylation of histone H2B to methylation of
histone H3. Mol Cell. 13:435–442. 2004. View Article : Google Scholar : PubMed/NCBI
|
47
|
Atanassov BS, Koutelou E and Dent SY: The
role of deubiquitinating enzymes in chromatin regulation. FEBS
Lett. Oct 26–2010.(Epub ahead of print).
|
48
|
Dalgliesh GL, Furge K, Greenman C, et al:
Systematic sequencing of renal carcinoma reveals inactivation of
histone modifying genes. Nature. 463:360–363. 2010. View Article : Google Scholar
|
49
|
Wang JK, Tsai MC, Poulin G, et al: The
histone demethylase UTX enables RB-dependent cell fate control.
Genes Dev. 24:327–332. 2010. View Article : Google Scholar : PubMed/NCBI
|
50
|
Newbold RF and Mokbel K: Evidence for a
tumour suppressor function of SETD2 in human breast cancer: a new
hypothesis. Anticancer Res. 30:3309–3311. 2010.PubMed/NCBI
|
51
|
Duns G, van den Berg E, van Duivenbode I,
et al: Histone methyltransferase gene SETD2 is a novel tumor
suppressor gene in clear cell renal cell carcinoma. Cancer Res.
70:4287–4291. 2010. View Article : Google Scholar : PubMed/NCBI
|
52
|
Kurman RJ and Shih IeM: Pathogenesis of
ovarian cancer: lessons from morphology and molecular biology and
their clinical implications. Int J Gynecol Pathol. 27:151–160.
2008.PubMed/NCBI
|
53
|
Kajihara H, Yamada Y, Kanayama S, et al:
Clear cell carcinoma of the ovary: Potential pathogenic mechanisms
(Review). Oncol Rep. 23:1193–1203. 2010.PubMed/NCBI
|
54
|
Sufan RI, Jewett MA and Ohh M: The role of
von Hippel-Lindau tumor suppressor protein and hypoxia in renal
clear cell carcinoma. Am J Physiol Renal Physiol. 287:F1–F6. 2004.
View Article : Google Scholar : PubMed/NCBI
|