Regulation of let-7 and its target oncogenes (Review)
- Authors:
- Xirui Wang
- Lei Cao
- Yingyi Wang
- Xiefeng Wang
- Ning Liu
- Yongping You
-
Affiliations: Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China - Published online on: February 14, 2012 https://doi.org/10.3892/ol.2012.609
- Pages: 955-960
This article is mentioned in:
Abstract
Nilsen TW: Mechanisms of microRNA-mediated gene regulation in animal cells. Trends Genet. 23:243–249. 2007. View Article : Google Scholar : PubMed/NCBI | |
Hutvágner G, McLachlan J, Pasquinelli AE, Bálint E, Tuschl T and Zamore PD: A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science. 293:834–838. 2001.PubMed/NCBI | |
Kim VN, Han J and Siomi MC: Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol. 10:126–139. 2009. View Article : Google Scholar : PubMed/NCBI | |
Carthew RW and Sontheimer EJ: Origins and mechanisms of miRNAs and siRNAs. Cell. 136:642–655. 2009. View Article : Google Scholar : PubMed/NCBI | |
Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR and Ruvkun G: The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature. 403:901–906. 2000. View Article : Google Scholar : PubMed/NCBI | |
Roush S and Slack FJ: The let-7 family of microRNAs. Trends Cell Biol. 18:505–516. 2008. View Article : Google Scholar | |
Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H, Harano T, Yatabe Y, Nagino M, Nimura Y, et al: Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res. 64:3753–3756. 2004. View Article : Google Scholar : PubMed/NCBI | |
Zhang HH, Wang XJ, Li GX, Yang E and Yang NM: Detection of let-7a microRNA by real-time PCR in gastric carcinoma. World J Gastroenterol. 13:2883–2888. 2007.PubMed/NCBI | |
Akao Y, Nakagawa Y and Naoe T: Let-7 microRNA functions as a potential growth suppressor in human colon cancer cells. Biol Pharm Bull. 29:903–906. 2006. View Article : Google Scholar : PubMed/NCBI | |
Sampson VB, Rong NH, Han J, Yang Q, Aris V, Soteropoulos P, Petrelli NJ, Dunn SP and Krueger LJ: MicroRNA let-7a down-regulates MYC and reverts MYC-induced growth in Burkitt lymphoma cells. Cancer Res. 67:9762–9770. 2007. View Article : Google Scholar : PubMed/NCBI | |
Grosshans H, Johnson T, Reinert KL, Gerstein M and Slack FJ: The temporal patterning microRNA let-7 regulates several transcription factors at the larval to adult transition in C. elegans. Dev Cell. 8:321–330. 2005. View Article : Google Scholar : PubMed/NCBI | |
Sokol NS, Xu P, Jan YN and Ambros V: Drosophila let-7 microRNA is required for remodeling of the neuromusculature during metamorphosis. Genes Dev. 22:1591–1596. 2008. View Article : Google Scholar | |
Caygill EE and Johnston LA: Temporal regulation of metamorphic processes in Drosophila by the let-7 and miR-125 heterochronic microRNAs. Curr Biol. 18:943–950. 2008. View Article : Google Scholar : PubMed/NCBI | |
Thomson JM, Parker J, Perou CM and Hammond SM: A custom microarray platform for analysis of microRNA gene expression. Nat Methods. 1:47–53. 2004. View Article : Google Scholar : PubMed/NCBI | |
Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, Pfeffer S, Rice A, Kamphorst AO, Landthaler M, et al: A mammalian microRNA expression atlas based on small RNA library sequencing. Cell. 129:1401–1414. 2007. View Article : Google Scholar : PubMed/NCBI | |
Esquela-Kerscher A and Slack FJ: Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer. 6:259–269. 2006. View Article : Google Scholar | |
Chang TC and Mendell JT: MicroRNAs in vertebrate physiology and human disease. Annu Rev Genomics Hum Genet. 8:215–239. 2007. View Article : Google Scholar : PubMed/NCBI | |
Viswanathan SR, Daley GQ and Gregory RI: Selective blockade of microRNA processing by Lin28. Science. 320:97–100. 2008. View Article : Google Scholar : PubMed/NCBI | |
Newman MA, Thomson JM and Hammond SM: Lin-28 interaction with the let-7 precursor loop mediates regulated microRNA processing. RNA. 14:1539–1549. 2008. View Article : Google Scholar : PubMed/NCBI | |
Piskounova E, Viswanathan SR, Janas M, LaPierre RJ, Daley GQ, Sliz P and Gregory RI: Determinants of microRNA processing inhibition by the developmentally regulated RNA-binding protein Lin28. J Biol Chem. 283:21310–21314. 2008. View Article : Google Scholar : PubMed/NCBI | |
Heo I, Joo C, Cho J, Ha M, Han J and Kim VN: Lin28 mediates the terminal uridylation of let-7 precursor microRNA. Mol Cell. 32:276–284. 2008. View Article : Google Scholar : PubMed/NCBI | |
Hagan JP, Piskounova E and Gregory RI: Lin28 recruits the TUTase Zcchc11 to inhibit let-7 maturation in mouse embryonic stem cells. Nat Struct Mol Biol. 16:1021–1025. 2009. View Article : Google Scholar : PubMed/NCBI | |
Heo I, Joo C, Kim YK, Ha M, Yoon MJ, Cho J, Yeom KH, Han J and Kim VN: TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation. Cell. 138:696–708. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lehrbach NJ, Armisen J, Lightfoot HL, Murfitt KJ, Bugaut A, Balasubramanian S and Miska EA: LIN-28 and the poly(U) polymerase PUP-2 regulate let-7 microRNA processing in Caenorhabditis elegans. Nat Struct Mol Biol. 16:1016–1020. 2009. View Article : Google Scholar : PubMed/NCBI | |
Jones PA and Baylin SB: The fundamental role of epigenetic events in cancer. Nat Rev Genet. 3:415–428. 2002.PubMed/NCBI | |
Ehrlich M: DNA methylation in cancer: too much, but also too little. Oncogene. 21:5400–5413. 2002. View Article : Google Scholar : PubMed/NCBI | |
Esteller M: Relevance of DNA methylation in the management of cancer. Lancet Oncol. 4:351–358. 2003. View Article : Google Scholar : PubMed/NCBI | |
Lujambio A, Ropero S, Ballestar E, Fraga MF, Cerrato C, Setien F, Casado S, Suarez-Gauthier A, Sanchez-Cespedes M, Git A, et al: Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Res. 67:1424–1429. 2007. View Article : Google Scholar : PubMed/NCBI | |
Saito Y, Liang G, Egger G, Friedman JM, Chuang JC, Coetzee GA and Jones PA: Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell. 9:435–443. 2006. View Article : Google Scholar : PubMed/NCBI | |
Yoshitomi T, Kawakami K, Enokida H, Chiyomaru T, Kagara I, Tatarano S, Yoshino H, Arimura H, Nishiyama K, Seki N and Nakagawa M: Restoration of miR-517a expression induces cell apoptosis in bladder cancer cell lines. Oncol Rep. 25:1661–1668. 2011.PubMed/NCBI | |
Brueckner B, Stresemann C, Kuner R, Mund C, Musch T, Meister M, Sültmann H and Lyko F: The human let-7a-3 locus contains an epigenetically regulated microRNA gene with oncogenic function. Cancer Res. 67:1419–1423. 2007. View Article : Google Scholar : PubMed/NCBI | |
Lu L, Katsaros D, de la Longrais IA, Sochirca O and Yu H: Hypermethylation of let-7a-3 in epithelial ovarian cancer is associated with low insulin-like growth factor-II expression and favorable prognosis. Cancer Res. 67:10117–10122. 2007. View Article : Google Scholar : PubMed/NCBI | |
Sakamoto S, Aoki K, Higuchi T, Todaka H, Morisawa K, Tamaki N, Hatano E, Fukushima A, Taniguchi T and Agata Y: The NF90-NF45 complex functions as a negative regulator in the micro RNA processing pathway. Mol Cell Biol. 29:3754–3769. 2009. View Article : Google Scholar : PubMed/NCBI | |
Iliopoulos D, Hirsch HA and Struhl K: An epigenetic switch involving NF-kappaB, Lin28, Let-7 microRNA, and IL6 links inflammation to cell transformation. Cell. 139:693–706. 2009. View Article : Google Scholar : PubMed/NCBI | |
Boyerinas B, Park SM, Shomron N, Hedegaard MM, Vinther J, Andersen JS, Feig C, Xu J, Burge CB and Peter ME: Identification of let-7-regulated oncofetal genes. Cancer Res. 68:2587–2591. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ioannidis P, Mahaira LG, Perez SA, Gritzapis AD, Sotiropoulou PA, Kavalakis GJ, Antsaklis AI, Baxevanis CN and Papamichail M: CRD-BP/IMP1 expression characterizes cord blood CD34+ stem cells and affects c-myc and IGF-II expression in MCF-7 cancer cells. J Biol Chem. 280:20086–20093. 2005.PubMed/NCBI | |
Chang TC, Zeitels LR, Hwang HW, Chivukula RR, Wentzel EA, Dews M, Jung J, Gao P, Dang CV, Beer MA, et al: Lin-28B transactivation is necessary for Myc-mediated let-7 repression and proliferation. Proc Natl Acad Sci USA. 106:3384–3389. 2009. View Article : Google Scholar : PubMed/NCBI | |
Dangi-Garimella S, Yun J, Eves EM, Newman M, Erkeland SJ, Hammond SM, Minn AJ and Rosner MR: Raf kinase inhibitory protein suppresses a metastasis signalling cascade involving LIN28 and let-7. EMBO J. 28:347–358. 2009. View Article : Google Scholar : PubMed/NCBI | |
Chang TC, Yu D, Lee YS, Wentzel EA, Arking DE, West KM, Dang CV, Thomas-Tikhonenko A and Mendell JT: Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet. 40:43–50. 2008. View Article : Google Scholar : PubMed/NCBI | |
Hammell CM, Karp X and Ambros V: A feedback circuit involving let-7-family miRNAs and DAF-12 integrates environmental signals and developmental timing in Caenorhabditis elegans. Proc Natl Acad Sci USA. 106:18668–18673. 2009. View Article : Google Scholar : PubMed/NCBI | |
Diederichs S and Haber DA: Dual role for argonautes in microRNA processing and posttranscriptional regulation of microRNA expression. Cell. 131:1097–1108. 2007. View Article : Google Scholar : PubMed/NCBI | |
Rybak A, Fuchs H, Hadian K, Smirnova L, Wulczyn EA, Michel G, Nitsch R, Krappmann D and Wulczyn FG: The let-7 target gene mouse lin-41 is a stem cell specific E3 ubiquitin ligase for the miRNA pathway protein Ago2. Nat Cell Biol. 11:1411–1420. 2009. View Article : Google Scholar : PubMed/NCBI | |
Forman JJ, Legesse-Miller A and Coller HA: A search for conserved sequences in coding regions reveals that the let-7 microRNA targets Dicer within its coding sequence. Proc Natl Acad Sci USA. 105:14879–14884. 2008. View Article : Google Scholar : PubMed/NCBI | |
Jakymiw A, Patel RS, Deming N, Bhattacharyya I, Shah P, Lamont RJ, Stewart CM, Cohen DM and Chan EK: Overexpression of dicer as a result of reduced let-7 microRNA levels contributes to increased cell proliferation of oral cancer cells. Genes Chromosomes Cancer. 49:549–559. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yonehara S, Ishii A and Yonehara M: A cell-killing monoclonal antibody (anti-Fas) to a cell surface antigen co-downregulated with the receptor of tumor necrosis factor. J Exp Med. 169:1747–1756. 1989. View Article : Google Scholar : PubMed/NCBI | |
Peter ME, Budd RC, Desbarats J, Hedrick SM, Hueber AO, Newell MK, Owen LB, Pope RM, Tschopp J, Wajant H, Wallach D, et al: The CD95 receptor: apoptosis revisited. Cell. 129:447–450. 2007. View Article : Google Scholar : PubMed/NCBI | |
Barnhart BC, Legembre P, Pietras E, Bubici C, Franzoso G and Peter ME: CD95 ligand induces motility and invasiveness of apoptosis-resistant tumor cells. EMBO J. 23:3175–3185. 2004. View Article : Google Scholar : PubMed/NCBI | |
Gordon N and Kleinerman ES: Aerosol therapy for the treatment of osteosarcoma lung metastases: targeting the Fas/FasL pathway and rationale for the use of gemcitabine. J Aerosol Med Pulm Drug Deliv. 23:189–196. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Tang Y, Cui H, Zhao X, Luo X, Pan W, Huang X and Shen N: Let-7/miR-98 regulate Fas and Fas-mediated apoptosis. Genes Immun. 12:149–154. 2011. View Article : Google Scholar : PubMed/NCBI | |
Geng L, Zhu B, Dai BH, Sui CJ, Xu F, Kan T, Shen WF and Yang JM: A let-7/Fas double-negative feedback loop regulates human colon carcinoma cells sensitivity to Fas-related apoptosis. Biochem Biophys Res Commun. 408:494–499. 2011. View Article : Google Scholar : PubMed/NCBI | |
Liang D, Meyer L, Chang DW, Lin J, Pu X, Ye Y, Gu J, Wu X and Lu K: Genetic variants in microRNA biosynthesis pathways and binding sites modify ovarian cancer risk, survival, and treatment response. Cancer Res. 70:9765–9776. 2010. View Article : Google Scholar : PubMed/NCBI | |
Permuth-Wey J, Kim D, Tsai YY, Lin HY, Chen YA, Barnholtz-Sloan J, Birrer MJ, Bloom G, Chanock SJ, Chen Z, et al: LIN28B polymorphisms influence susceptibility to epithelial ovarian cancer. Cancer Res. 71:3896–3903. 2011. View Article : Google Scholar : PubMed/NCBI | |
Chen AX, Yu KD, Fan L, Li JY, Yang C, Huang AJ and Shao ZM: Germline genetic variants disturbing the Let-7/LIN28 double-negative feedback loop alter breast cancer susceptibility. PLoS Genet. 7:e10022592011. View Article : Google Scholar : PubMed/NCBI | |
Lytle JR, Yario TA and Steitz JA: Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5′ UTR as in the 3′ UTR. Proc Natl Acad Sci USA. 104:9667–9672. 2007.PubMed/NCBI | |
Nottrott S, Simard MJ and Richter JD: Human let-7a miRNA blocks protein production on actively translating polyribosomes. Nat Struct Mol Biol. 13:1108–1114. 2006. View Article : Google Scholar : PubMed/NCBI | |
Beilharz TH, Humphreys DT, Clancy JL, Thermann R, Martin DI, Hentze MW and Preiss T: MicroRNA-mediated messenger RNA deadenylation contributes to translational repression in mammalian cells. PLoS One. 4:e67832009. View Article : Google Scholar : PubMed/NCBI | |
Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, Labourier E, Reinert KL, Brown D and Slack FJ: Ras is regulated by the let-7 microRNA family. Cell. 120:635–647. 2005. View Article : Google Scholar : PubMed/NCBI | |
Nelson HH, Christensen BC, Plaza SL, Wiencke JK, Marsit CJ and Kelsey KT: KRAS mutation, KRAS-LCS6 polymorphism, and non-small cell lung cancer. Lung Cancer. 69:51–53. 2010. View Article : Google Scholar : PubMed/NCBI | |
Chin LJ, Ratner E, Leng S, Zhai R, Nallur S, Babar I, Muller RU, Straka E, Su L, Burki EA, et al: A SNP in a let-7 microRNA complementary site in the KRAS 3′ untranslated region increases non-small cell lung cancer risk. Cancer Res. 68:8535–8540. 2008.PubMed/NCBI | |
Paranjape T, Heneghan H, Lindner R, Keane FK, Hoffman A, Hollestelle A, Dorairaj J, Geyda K, Pelletier C, Nallur S, et al: A 3′-untranslated region KRAS variant and triple-negative breast cancer: a case-control and genetic analysis. Lancet Oncol. 12:377–386. 2011. | |
Lee ST, Chu K, Oh HJ, Im WS, Lim JY, Kim SK, Park CK, Jung KH, Lee SK, Kim M and Roh JK: Let-7 microRNA inhibits the proliferation of human glioblastoma cells. J Neurooncol. 102:19–24. 2010.PubMed/NCBI | |
He XY, Chen JX, Zhang Z, Li CL, Peng QL and Peng HM: The let-7a microRNA protects from growth of lung carcinoma by suppression of k-Ras and c-Myc in nude mice. J Cancer Res Clin Oncol. 136:1023–1028. 2010. View Article : Google Scholar : PubMed/NCBI | |
Sgarra R, Rustighi A, Tessari MA, Di Bernardo J, Altamura S, Fusco A, Manfioletti G and Giancotti V: Nuclear phosphoproteins HMGA and their relationship with chromatin structure and cancer. FEBS Lett. 574:1–8. 2004. View Article : Google Scholar : PubMed/NCBI | |
Sarhadi VK, Wikman H, Salmenkivi K, Kuosma E, Sioris T, Salo J, Karjalainen A, Knuutila S and Anttila S: Increased expression of high mobility group A proteins in lung cancer. J Pathol. 209:206–212. 2006. View Article : Google Scholar : PubMed/NCBI | |
Meyer B, Loeschke S, Schultze A, Weigel T, Sandkamp M, Goldmann T, Vollmer E and Bullerdiek J: HMGA2 overexpression in non-small cell lung cancer. Mol Carcinog. 46:503–511. 2007. View Article : Google Scholar : PubMed/NCBI | |
Abe N, Watanabe T, Suzuki Y, Matsumoto N, Masaki T, Mori T, Sugiyama M, Chiappetta G, Fusco A and Atomi Y: An increased high-mobility group A2 expression level is associated with malignant phenotype in pancreatic exocrine tissue. Br J Cancer. 89:2104–2109. 2003. View Article : Google Scholar : PubMed/NCBI | |
Miyazawa J, Mitoro A, Kawashiri S, Chada KK and Imai K: Expression of mesenchyme-specific gene HMGA2 in squamous cell carcinomas of the oral cavity. Cancer Res. 64:2024–2029. 2004. View Article : Google Scholar : PubMed/NCBI | |
Belge G, Meyer A, Klemke M, Burchardt K, Stern C, Wosniok W, Loeschke S and Bullerdiek J: Upregulation of HMGA2 in thyroid carcinomas: a novel molecular marker to distinguish between benign and malignant follicular neoplasias. Genes Chromosomes Cancer. 47:56–63. 2008. View Article : Google Scholar | |
Borrmann L, Wilkening S and Bullerdiek J: The expression of HMGA genes is regulated by their 3'UTR. Oncogene. 20:4537–4541. 2001. View Article : Google Scholar : PubMed/NCBI | |
Motoyama K, Inoue H, Nakamura Y, Uetake H, Sugihara K and Mori M: Clinical significance of high mobility group A2 in human gastric cancer and its relationship to let-7 microRNA family. Clin Cancer Res. 14:2334–2340. 2008. View Article : Google Scholar : PubMed/NCBI | |
Shi G, Perle MA, Mittal K, Chen H, Zou X, Narita M, Hernando E, Lee P and Wei JJ: Let-7 repression leads to HMGA2 overexpression in uterine leiomyosarcoma. J Cell Mol Med. 13:3898–3905. 2009. View Article : Google Scholar : PubMed/NCBI | |
Mayr C, Hemann MT and Bartel DP: Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science. 315:1576–1579. 2007. View Article : Google Scholar : PubMed/NCBI | |
Albihn A, Johnsen JI and Henriksson MA: Myc in oncogenesis and as a target for cancer therapies. Adv Cancer Res. 107:163–224. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ruggero D: The role of Myc-induced protein synthesis in cancer. Cancer Res. 69:8839–8843. 2009. View Article : Google Scholar : PubMed/NCBI | |
Schultz J, Lorenz P, Gross G, Ibrahim S and Kunz M: MicroRNA let-7b targets important cell cycle molecules in malignant melanoma cells and interferes with anchorage-independent growth. Cell Res. 18:549–557. 2008. View Article : Google Scholar : PubMed/NCBI | |
Johnson CD, Esquela-Kerscher A, Stefani G, Byrom M, Kelnar K, Ovcharenko D, Wilson M, Wang X, Shelton J, Shingara J, et al: The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Res. 67:7713–7722. 2007. View Article : Google Scholar : PubMed/NCBI | |
Leeman RJ, Lui VW and Grandis JR: STAT3 as a therapeutic target in head and neck cancer. Expert Opin Biol Ther. 6:231–241. 2006. View Article : Google Scholar : PubMed/NCBI | |
Bowman T, Garcia R, Turkson J and Jove R: STATs in oncogenesis. Oncogene. 19:2474–2488. 2000. View Article : Google Scholar : PubMed/NCBI | |
Achcar RO, Cagle PT and Jagirdar J: Expression of activated and latent signal transducer and activator of transcription 3 in 303 non-small cell lung carcinomas and 44 malignant mesotheliomas: possible role for chemotherapeutic intervention. Arch Pathol Lab Med. 131:1350–1360. 2007. | |
Ma XT, Wang S, Ye YJ, Du RY, Cui ZR and Somsouk M: Constitutive activation of Stat3 signaling pathway in human colorectal carcinoma. World J Gastroenterol. 10:1569–1573. 2004.PubMed/NCBI | |
Wang Y, Lu Y, Toh ST, Sung WK, Tan P, Chow P, Chung AY, Jooi LL and Lee CG: Lethal-7 is down-regulated by the hepatitis B virus x protein and targets signal transducer and activator of transcription 3. J Hepatol. 53:57–66. 2010. View Article : Google Scholar : PubMed/NCBI | |
Bronner C, Achour M, Arima Y, Chataigneau T, Saya H and Schini-Kerth VB: The UHRF family: oncogenes that are drugable targets for cancer therapy in the near future? Pharmacol Ther. 115:419–434. 2007. View Article : Google Scholar : PubMed/NCBI | |
Robinson PA and Ardley HC: Ubiquitin-protein ligases. J Cell Sci. 117:5191–5194. 2004. View Article : Google Scholar : PubMed/NCBI | |
Arima Y, Hirota T, Bronner C, Mousli M, Fujiwara T, Niwa S, Ishikawa H and Saya H: Down-regulation of nuclear protein ICBP90 by p53/p21Cip1/WAF1-dependent DNA-damage checkpoint signals contributes to cell cycle arrest at G1/S transition. Genes Cells. 9:131–142. 2004. View Article : Google Scholar : PubMed/NCBI | |
He X, Duan C, Chen J, Ou-Yang X, Zhang Z, Li C and Peng H: Let-7a elevates p21(WAF1) levels by targeting of NIRF and suppresses the growth of A549 lung cancer cells. FEBS Lett. 583:3501–3507. 2009. View Article : Google Scholar : PubMed/NCBI |