1
|
Kasenda B, Ruckert A, Farthmann J, et al:
Management of multiple myeloma in pregnancy: strategies for a rare
challenge. Clin Lymphoma Myeloma Leuk. 11:190–197. 2011. View Article : Google Scholar : PubMed/NCBI
|
2
|
Siegel DS, Vij R and Jakubowiak AJ:
Clinical roundtable monograph. Emerging treatment options for
relapsed and refractory multiple myeloma. Clin Adv Hematol Oncol.
9:1–15. 2011.PubMed/NCBI
|
3
|
Gu H, Rao S, Zhao J, et al: Gambogic acid
reduced bcl-2 expression via p53 in human breast MCF-7 cancer
cells. J Cancer Res Clin Oncol. 135:1777–1782. 2009. View Article : Google Scholar : PubMed/NCBI
|
4
|
Xu X, Liu Y, Wang L, et al: Gambogic acid
induces apoptosis by regulating the expression of Bax and Bcl-2 and
enhancing caspase-3 activity in human malignant melanoma A375
cells. Int J Dermatol. 48:186–192. 2009. View Article : Google Scholar : PubMed/NCBI
|
5
|
Cui G, Shu W, Wu Q and Chen Y: Effect of
Gambogic acid on the regulation of hERG channel in K562 cells in
vitro. J Huazhong Univ Sci Technolog Med Sci. 29:540–545. 2009.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Wang Y, Chen Y, Chen Z, Wu Q, Ke WJ and Wu
QL: Gambogic acid induces death inducer-obliterator 1-mediated
apoptosis in Jurkat T cells. Acta Pharmacol Sin. 29:349–354. 2008.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Rong JJ, Hu R, Song XM, et al: Gambogic
acid triggers DNA damage signaling that induces p53/p21 (Waf1/CIP1)
activation through the ATR-Chk1 pathway. Cancer Lett. 296:55–64.
2010. View Article : Google Scholar : PubMed/NCBI
|
8
|
Nanduri J, Wang N, Bergson P, Yuan G,
Ficker E and Prabhakar NR: Mitochondrial reactive oxygen species
mediate hypoxic down-regulation of hERG channel protein. Biochem
Biophys Res Commun. 373:309–314. 2008. View Article : Google Scholar : PubMed/NCBI
|
9
|
Liu B, Chen Y and St Clair DK: ROS and
p53: a versatile partnership. Free Radic Biol Med. 44:1529–1535.
2008. View Article : Google Scholar : PubMed/NCBI
|
10
|
Azad N, Iyer A, Vallyathan V, et al: Role
of oxidative/nitrosative stress-mediated Bcl-2 regulation in
apoptosis and malignant transformation. Ann NY Acad Sci. 1203:1–6.
2010. View Article : Google Scholar : PubMed/NCBI
|
11
|
Borutaite V and Brown GC: Caspases are
reversibly inactivated by hydrogen peroxide. FEBS Lett.
500:114–118. 2001. View Article : Google Scholar : PubMed/NCBI
|
12
|
Chen YC, Shen SC and Tsai SH:
Prostaglandin D(2) and J(2) induce apoptosis in human leukemia
cells via activation of the caspase 3 cascade and production of
reactive oxygen species. Biochim Biophys Acta. 1743:291–304. 2005.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Nie F, Zhang X, Qi Q, et al: Reactive
oxygen species accumulation contributes to gambogic acid-induced
apoptosis in human hepatoma SMMC-7721 cells. Toxicology. 260:60–67.
2009. View Article : Google Scholar : PubMed/NCBI
|
14
|
Scherz-Shouval R and Elazar Z: Regulation
of autophagy by ROS: physiology and pathology. Trends Biochem Sci.
36:30–38. 2011. View Article : Google Scholar : PubMed/NCBI
|
15
|
Bokoch GM: Regulation of the human
neutrophil NADPH oxidase by the Rac GTP-binding proteins. Curr Opin
Cell Biol. 6:212–218. 1994. View Article : Google Scholar : PubMed/NCBI
|
16
|
Sundaresan M, Yu ZX, Ferrans VJ, et al:
Regulation of reactive-oxygen-species generation in fibroblasts by
Rac1. Biochem J. 318(Pt 2): 379–382. 1996.PubMed/NCBI
|
17
|
Terada LS: Specificity in reactive oxidant
signaling: think globally, act locally. J Cell Biol. 174:615–623.
2006. View Article : Google Scholar : PubMed/NCBI
|
18
|
Jones DP: Redefining oxidative stress.
Antioxid Redox Signal. 8:1865–1879. 2006. View Article : Google Scholar
|
19
|
Valko M, Leibfritz D, Moncol J, Cronin MT,
Mazur M and Telser J: Free radicals and antioxidants in normal
physiological functions and human disease. Int J Biochem Cell Biol.
39:44–84. 2007. View Article : Google Scholar : PubMed/NCBI
|
20
|
Chen Y, Jungsuwadee P, Vore M, Butterfield
DA and St Clair DK: Collateral damage in cancer chemotherapy:
oxidative stress in nontargeted tissues. Mol Interv. 7:147–156.
2007. View
Article : Google Scholar : PubMed/NCBI
|
21
|
Smith BC, Hallows WC and Denu JM:
Mechanisms and molecular probes of sirtuins. Chem Biol.
15:1002–1013. 2008. View Article : Google Scholar : PubMed/NCBI
|
22
|
Luo J, Nikolaev AY, Imai S, et al:
Negative control of p53 by Sir2alpha promotes cell survival under
stress. Cell. 107:137–148. 2001. View Article : Google Scholar : PubMed/NCBI
|
23
|
Zeng R, He J, Peng J, et al: The
time-dependent autophagy protects against apoptosis with possible
involvement of Sirt1 protein in multiple myeloma under nutrient
depletion. Ann Hematol. 91:407–417. 2012. View Article : Google Scholar : PubMed/NCBI
|
24
|
Olmos Y, Brosens JJ and Lam EW: Interplay
between SIRT proteins and tumour suppressor transcription factors
in chemotherapeutic resistance of cancer. Drug Resist Updat.
14:35–44. 2011. View Article : Google Scholar : PubMed/NCBI
|
25
|
Chauhan D, Bandi M, Singh AV, et al:
Preclinical evaluation of a novel SIRT1 modulator SRT1720 in
multiple myeloma cells. Br J Haematol. 155:588–598. 2011.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Lazebnik YA, Kaufmann SH, Desnoyers S,
Poirier GG and Earnshaw WC: Cleavage of poly(ADP-ribose) polymerase
by a proteinase with properties like ICE. Nature. 371:346–347.
1994. View
Article : Google Scholar : PubMed/NCBI
|
27
|
Prasad S, Pandey MK, Yadav VR and Aggarwal
BB: Gambogic acid inhibits STAT3 phosphorylation through activation
of protein tyrosine phosphatase SHP-1: potential role in
proliferation and apoptosis. Cancer Prev Res (Phila). 4:1084–1094.
2011. View Article : Google Scholar : PubMed/NCBI
|
28
|
Degterev A, Boyce M and Yuan J: A decade
of caspases. Oncogene. 22:8543–8567. 2003. View Article : Google Scholar : PubMed/NCBI
|
29
|
Salvesen GS and Abrams JM: Caspase
activation stepping on the gas or releasing the brakes? Lessons
from humans and flies. Oncogene. 23:2774–2784. 2004. View Article : Google Scholar : PubMed/NCBI
|
30
|
Circu ML and Aw TY: Reactive oxygen
species, cellular redox systems, and apoptosis. Free Radic Biol
Med. 48:749–762. 2010. View Article : Google Scholar : PubMed/NCBI
|
31
|
Slee EA, Harte MT, Kluck RM, et al:
Ordering the cytochrome c-initiated caspase cascade: hierarchical
activation of caspases-2, -3, -6, -7, -8, and -10 in a
caspase-9-dependent manner. J Cell Biol. 144:281–292. 1999.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Fraga MF, Agrelo R and Esteller M:
Cross-talk between aging and cancer: the epigenetic language. Ann
NY Acad Sci. 1100:60–74. 2007. View Article : Google Scholar : PubMed/NCBI
|
33
|
Fraga MF and Esteller M: Epigenetics and
aging: the targets and the marks. Trends Genet. 23:413–418. 2007.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Hida Y, Kubo Y, Murao K and Arase S:
Strong expression of a longevity-related protein, SIRT1, in Bowen's
disease. Arch Dermatol Res. 299:103–106. 2007. View Article : Google Scholar : PubMed/NCBI
|
35
|
Lim CS: Human SIRT1: a potential biomarker
for tumorigenesis? Cell Biol Int. 31:636–637. 2007. View Article : Google Scholar : PubMed/NCBI
|
36
|
Chu F, Chou PM, Zheng X, Mirkin BL and
Rebbaa A: Control of multidrug resistance gene mdr1 and cancer
resistance to chemotherapy by the longevity gene sirt1. Cancer Res.
65:10183–10187. 2005. View Article : Google Scholar : PubMed/NCBI
|
37
|
Matsushita N, Takami Y, Kimura M, et al:
Role of NAD-dependent deacetylases SIRT1 and SIRT2 in radiation and
cisplatin-induced cell death in vertebrate cells. Genes Cells.
10:321–332. 2005. View Article : Google Scholar : PubMed/NCBI
|
38
|
Brunet A, Sweeney LB, Sturgill JF, et al:
Stress-dependent regulation of FOXO transcription factors by the
SIRT1 deacetylase. Science. 303:2011–2015. 2004. View Article : Google Scholar : PubMed/NCBI
|
39
|
Zhao G, Cui J, Zhang JG, et al: SIRT1 RNAi
knockdown induces apoptosis and senescence, inhibits invasion and
enhances chemosensitivity in pancreatic cancer cells. Gene Ther.
18:920–928. 2011. View Article : Google Scholar : PubMed/NCBI
|