miRNA: The nemesis of gastric cancer (Review)
- Authors:
- Xiaohui Xu
- Xiaodong Yang
- Chungen Xing
- Shuyu Zhang
- Jianping Cao
-
Affiliations: Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 21500, P.R. China, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, P.R. China - Published online on: June 26, 2013 https://doi.org/10.3892/ol.2013.1428
- Pages: 631-641
This article is mentioned in:
Abstract
Jemal A, Bray F, Center MM, Ferlay J, Ward E and Forman D: Global cancer statistics. CA Cancer J Clin. 61:69–90. 2011. View Article : Google Scholar | |
Schoof CR, Botelho EL, Izzotti A and dos Vasques LR: MicroRNAs in cancer treatment and prognosis. Am J Cancer Res. 2:414–433. 2012.PubMed/NCBI | |
Yu BQ, Su LP, Li JF, Cai Q, Yan M, Chen XH, et al: microRNA expression signature of gastric cancer cells relative to normal gastric mucosa. Mol Med Rep. 6:821–826. 2012.PubMed/NCBI | |
Ueda T, Volinia S, Okumura H, Shimizu M, Taccioli C, Rossi S, et al: Relation between microRNA expression and progression and prognosis of gastric cancer: a microRNA expression analysis. Lancet Oncol. 11:136–146. 2010. View Article : Google Scholar : PubMed/NCBI | |
Tsujiura M, Ichikawa D, Komatsu S, Shiozaki A, Takeshita H, Kosuga T, et al: Circulating microRNAs in plasma of patients with gastric cancers. Br J Cancer. 102:1174–1179. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lee RC, Feinbaum RL and Ambros V: The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 75:843–854. 1993. | |
Wightman B, Ha I and Ruvkun G: Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell. 75:855–862. 1993. View Article : Google Scholar : PubMed/NCBI | |
Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, et al: The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature. 403:901–906. 2000. View Article : Google Scholar : PubMed/NCBI | |
Hutvagner G, McLachlan J, Pasquinelli AE, et al: A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science. 293:834–838. 2001. View Article : Google Scholar : PubMed/NCBI | |
Han J, Lee Y, Yeom KH, Nam JW, Heo I, Rhee JK, et al: Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell. 125:887–901. 2006. View Article : Google Scholar : PubMed/NCBI | |
Klase Z, Houzet L and Jeang KT: Replication competent HIV-1 viruses that express intragenomic microRNA reveal discrete RNA-interference mechanisms that affect viral replication. Cell Biosci. 1:382011. View Article : Google Scholar : PubMed/NCBI | |
Bernstein E, Caudy AA, Hammond SM and Hannon GJ: Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature. 409:363–366. 2001. View Article : Google Scholar : PubMed/NCBI | |
Han J, Lee Y, Yeom KH, Kim YK, Jin H and Kim VN: The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev. 18:3016–3027. 2004. View Article : Google Scholar : PubMed/NCBI | |
Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH and Kim VN: MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 23:4051–4060. 2004. View Article : Google Scholar : PubMed/NCBI | |
Cai X, Hagedorn CH and Cullen BR: Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA. 10:1957–1966. 2004. View Article : Google Scholar : PubMed/NCBI | |
Kim YK and Kim VN: Processing of intronic microRNAs. EMBO J. 26:775–783. 2007. View Article : Google Scholar : PubMed/NCBI | |
Kim VN: MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol. 6:376–385. 2005. View Article : Google Scholar : PubMed/NCBI | |
Kusenda B, Mraz M, Mayer J and Pospisilova S: MicroRNA biogenesis, functionality and cancer relevance. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 150:205–215. 2006. View Article : Google Scholar : PubMed/NCBI | |
Place RF, Li LC, Pookot D, Noonan EJ and Dahiya R: MicroRNA-373 induces expression of genes with complementary promoter sequences. Proc Natl Acad Sci USA. 105:1608–1613. 2008. View Article : Google Scholar : PubMed/NCBI | |
Vasudevan S, Tong Y and Steitz JA: Switching from repression to activation: microRNAs can up-regulate translation. Science. 318:1931–1934. 2007. View Article : Google Scholar : PubMed/NCBI | |
Mattaj IW, Tollervey D and Séraphin B: Small nuclear RNAs in messenger RNA and ribosomal RNA processing. FASEB J. 7:47–53. 1993.PubMed/NCBI | |
Bachellerie JP, Cavaillé J and Hüttenhofer A: The expanding snoRNA world. Biochimie. 84:775–790. 2002. View Article : Google Scholar : PubMed/NCBI | |
Ambros V, Lee RC, Lavanway A, Williams PT and Jewell D: MicroRNAs and other tiny endogenous RNAs in C. elegans. Curr Biol. 13:807–818. 2003. View Article : Google Scholar : PubMed/NCBI | |
Du T and Zamore PD: microPrimer: the biogenesis and function of microRNA. Development. 132:4645–4652. 2005. View Article : Google Scholar : PubMed/NCBI | |
Lim LP, Glasner ME, Yekta S, Burge CB and Bartel DP: Vertebrate microRNA genes. Science. 299:15402003. View Article : Google Scholar : PubMed/NCBI | |
Chan JA, Krichevsky AM and Kosik KS: MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res. 65:6029–6033. 2005. View Article : Google Scholar : PubMed/NCBI | |
Cheng AM, Byrom MW, Shelton J and Ford LP: Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res. 33:1290–1297. 2005. View Article : Google Scholar : PubMed/NCBI | |
Santarpia L, Nicoloso M and Calin GA: MicroRNAs: a complex regulatory network drives the acquisition of malignant cell phenotype. Endocr Relat Cancer. 17:F51–F75. 2010. View Article : Google Scholar : PubMed/NCBI | |
Mattie MD, Benz CC, Bowers J, et al: Optimized high-throughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies. Mol Cancer. 5:242006. View Article : Google Scholar | |
Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, et al: A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA. 103:2257–2261. 2006. View Article : Google Scholar : PubMed/NCBI | |
Grady WM, Parkin RK, Mitchell PS, Lee JH, Kim YH, Tsuchiya KD, et al: Epigenetic silencing of the intronic microRNA hsa-miR-342 and its host gene EVL in colorectal cancer. Oncogene. 27:3880–3888. 2008. View Article : Google Scholar : PubMed/NCBI | |
Lanza G, Ferracin M, Gafà R, Veronese A, Spizzo R, Pichiorri F, et al: mRNA/microRNA gene expression profile in microsatellite unstable colorectal cancer. Mol Cancer. 6:542007. View Article : Google Scholar : PubMed/NCBI | |
Gaur A, Jewell DA, Liang Y, Ridzon D, Moore JH, Chen C, et al: Characterization of microRNA expression levels and their biological correlates in human cancer cell lines. Cancer Res. 67:2456–2468. 2007. View Article : Google Scholar : PubMed/NCBI | |
Saito Y, Suzuki H and Hibi T: The role of microRNAs in gastrointestinal cancers. J Gastroenterol. 44(Suppl 19): 18–22. 2009. View Article : Google Scholar | |
Ma L, Young J, Prabhala H, Pan E, Mestdagh P, Muth D, et al: miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat Cell Biol. 12:247–256. 2010.PubMed/NCBI | |
Noonan EJ, Place RF, Basak S, Pookot D and Li LC: miR-449a causes Rb-dependent cell cycle arrest and senescence in prostate cancer cells. Oncotarget. 1:349–358. 2010.PubMed/NCBI | |
Pulikkan JA, Dengler V, Peramangalam PS, Peer Zada AA, Müller-Tidow C, Bohlander SK, et al: Cell-cycle regulator E2F1 and microRNA-223 comprise an autoregulatory negative feedback loop in acute myeloid leukemia. Blood. 115:1768–1778. 2010. View Article : Google Scholar : PubMed/NCBI | |
Hermeking H: The miR-34 family in cancer and apoptosis. Cell Death Differ. 17:193–199. 2010. View Article : Google Scholar : PubMed/NCBI | |
Vogt M, Munding J, Grüner M, Liffers ST, Verdoodt B, Hauk J, et al: Frequent concomitant inactivation of miR-34a and miR-34b/c by CpG methylation in colorectal, pancreatic, mammary, ovarian, urothelial, and renal cell carcinomas and soft tissue sarcomas. Virchows Arch. 458:313–322. 2011. View Article : Google Scholar : PubMed/NCBI | |
Allgayer H: Pdcd4, a colon cancer prognostic that is regulated by a microRNA. Crit Rev Oncol Hematol. 73:185–191. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lu Z, Liu M, Stribinskis V, Klinge CM, Ramos KS, Colburn NH and Li Y: MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene. Oncogene. 27:4373–4379. 2008. View Article : Google Scholar : PubMed/NCBI | |
Dews M, Homayouni A, Yu D, Murphy D, Sevignani C, Wentzel E, et al: Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nat Genet. 38:1060–1065. 2006. View Article : Google Scholar : PubMed/NCBI | |
Spizzo R, Nicoloso MS, Lupini L, Lu Y, Fogarty J, Rossi S, et al: miR-145 participates with TP53 in a death-promoting regulatory loop and targets estrogen receptor-alpha in human breast cancer cells. Cell Death Differ. 17:246–254. 2010. View Article : Google Scholar : PubMed/NCBI | |
Hao J, Zhang S, Zhou Y, Hu X and Shao C: MicroRNA 483–3p suppresses the expression of DPC4/Smad4 in pancreatic cancer. FEBS Lett. 585:207–213. 2011. | |
Hao J, Zhang S, Zhou Y, Liu C, Hu X and Shao C: MicroRNA 421 suppresses DPC4/Smad4 in pancreatic cancer. Biochem Biophys Res Commun. 406:552–557. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Takahashi S, Tasaka A, Yoshima T, Ochi H and Chayama K: Involvement of microRNA-224 in cell proliferation, migration, invasion and anti-apoptosis in hepatocellular carcinoma. J Gastroenterol Hepatol. 28:565–575. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hudson RS, Yi M, Esposito D, Glynn SA, Starks AM, Yang Y, et al: MicroRNA-106b-25 cluster expression is associated with early disease recurrence and targets caspase-7 and focal adhesion in human prostate cancer. Oncogene. Sep 17–2012.(Epub ahead of print). | |
Kasinski AL and Slack FJ: miRNA-34 prevents cancer initiation and progression in a therapeutically resistant K-ras and p53-induced mouse model of lung adenocarcinoma. Cancer Res. 72:5576–5587. 2012. View Article : Google Scholar : PubMed/NCBI | |
Panarelli NC and Yantiss RK: MicroRNA Expression in Selected Carcinomas of the Gastrointestinal Tract. Patholog Res Int. 2011:1246082011.PubMed/NCBI | |
Tokumaru Y, Yamashita K, Osada M, et al: Inverse correlation between cyclin A1 hypermethylation and p53 mutation in head and neck cancer identified by reversal of epigenetic silencing. Cancer Res. 64:5982–5987. 2004. View Article : Google Scholar : PubMed/NCBI | |
Wittmann J and Jäck HM: Serum microRNAs as powerful cancer biomarkers. Biochim Biophys Acta. 1806:200–207. 2010.PubMed/NCBI | |
Krutovskikh VA and Herceg Z: Oncogenic microRNAs (OncomiRs) as a new class of cancer biomarkers. Bioessays. 32:894–904. 2010. View Article : Google Scholar : PubMed/NCBI | |
Brase JC, Wuttig D, Kuner R and Sültmann H: Serum microRNAs as non-invasive biomarkers for cancer. Mol Cancer. 9:3062010. View Article : Google Scholar : PubMed/NCBI | |
Lawrie CH, Gal S, Dunlop HM, Pushkaran B, Liggins AP, Pulford K, et al: Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol. 141:672–675. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Chen J, Chang P, LeBlanc A, Li D, Abbruzzesse JL, et al: MicroRNAs in plasma of pancreatic ductal adenocarcinoma patients as novel blood-based biomarkers of disease. Cancer Prev Res (Phila). 2:807–813. 2009. View Article : Google Scholar : PubMed/NCBI | |
Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, et al: Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA. 105:10513–10518. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ng EK, Chong WW, Jin H, Lam EK, Shin VY, Yu J, et al: Differential expression of microRNAs in plasma of patients with colorectal cancer: a potential marker for colorectal cancer screening. Gut. 58:1375–1381. 2009. View Article : Google Scholar : PubMed/NCBI | |
Cheng H, Zhang L, Cogdell DE, Zheng H, Schetter AJ, Nykter M, et al: Circulating plasma MiR-141 is a novel biomarker for metastatic colon cancer and predicts poor prognosis. PLoS One. 6:e177452011. View Article : Google Scholar : PubMed/NCBI | |
Huang Z, Huang D, Ni S, Peng Z, Sheng W and Du X: Plasma microRNAs are promising novel biomarkers for early detection of colorectal cancer. Int J Cancer. 127:118–126. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wang LG and Gu J: Serum microRNA-29a is a promising novel marker for early detection of colorectal liver metastasis. Cancer Epidemiol. 36:e61–e67. 2012. View Article : Google Scholar : PubMed/NCBI | |
Luo X, Burwinkel B, Tao S and Brenner H: MicroRNA signatures: novel biomarker for colorectal cancer? Cancer Epidemiol Biomarkers Prev. 20:1272–1286. 2011. View Article : Google Scholar | |
Pu XX, Huang GL, Guo HQ, Guo CC, Li H, Ye S, et al: Circulating miR-221 directly amplified from plasma is a potential diagnostic and prognostic marker of colorectal cancer and is correlated with p53 expression. J Gastroenterol Hepatol. 25:1674–1680. 2010. View Article : Google Scholar : PubMed/NCBI | |
Hennessey PT, Sanford T, Choudhary A, Mydlarz WW, Brown D, Adai AT, et al: Serum microRNA biomarkers for detection of non-small cell lung cancer. PLoS One. 7:e323072012. View Article : Google Scholar : PubMed/NCBI | |
Yuxia M, Zhennan T and Wei Z: Circulating miR-125b is a novel biomarker for screening non-small-cell lung cancer and predicts poor prognosis. J Cancer Res Clin Oncol. 138:2045–2050. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kosaka N, Iguchi H and Ochiya T: Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis. Cancer Sci. 101:2087–2092. 2010. View Article : Google Scholar : PubMed/NCBI | |
Bou Kheir T, Futoma-Kazmierczak E, Jacobsen A, Krogh A, Bardram L, Hother C, et al: miR-449 inhibits cell proliferation and is down-regulated in gastric cancer. Mol Cancer. 10:292011.PubMed/NCBI | |
Zhang Z, Li Z, Gao C, Chen P, Chen J, Liu W, et al: miR-21 plays a pivotal role in gastric cancer pathogenesis and progression. Lab Invest. 88:1358–1366. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zhang BG, Li JF, Yu BQ, Zhu ZG, Liu BY and Yan M: microRNA-21 promotes tumor proliferation and invasion in gastric cancer by targeting PTEN. Oncol Rep. 27:1019–1026. 2012.PubMed/NCBI | |
Luo H, Zhang H, Zhang Z, Zhang X, Ning B, Guo J, et al: Down-regulated miR-9 and miR-433 in human gastric carcinoma. J Exp Clin Cancer Res. 28:822009. View Article : Google Scholar : PubMed/NCBI | |
Kim YK, Yu J, Han TS, Park SY, Namkoong B, Kim DH, et al: Functional links between clustered microRNAs: suppression of cell-cycle inhibitors by microRNA clusters in gastric cancer. Nucleic Acids Res. 37:1672–1681. 2009. View Article : Google Scholar : PubMed/NCBI | |
Tsukamoto Y, Nakada C, Noguchi T, Tanigawa M, Nguyen LT, Uchida T, et al: MicroRNA-375 is downregulated in gastric carcinomas and regulates cell survival by targeting PDK1 and 14-3-3zeta. Cancer Res. 70:2339–2349. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ding L, Xu Y, Zhang W, Deng Y, Si M, Du Y, et al: MiR-375 frequently downregulated in gastric cancer inhibits cell proliferation by targeting JAK2. Cell Res. 20:784–793. 2010. View Article : Google Scholar : PubMed/NCBI | |
Xu Y, Deng Y, Yan X and Zhou T: Targeting miR-375 in gastric cancer. Expert Opin Ther Targets. 15:961–972. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wan HY, Guo LM, Liu T, Liu M, Li X and Tang H: Regulation of the transcription factor NF-kappaB1 by microRNA-9 in human gastric adenocarcinoma. Mol Cancer. 9:162010. View Article : Google Scholar : PubMed/NCBI | |
Du Y, Xu Y, Ding L, Yao H, Yu H, Zhou T and Si J: Down-regulation of miR-141 in gastric cancer and its involvement in cell growth. J Gastroenterol. 44:556–561. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Fan KJ, Sun Q, Chen AZ, Shen WL, Zhao ZH, et al: Functional screening for miRNAs targeting Smad4 identified miR-199a as a negative regulator of TGF-β signalling pathway. Nucleic Acids Res. 40:9286–9297. 2012.PubMed/NCBI | |
Zhang X, Nie Y, Du Y, Cao J, Shen B and Li Y: MicroRNA-181a promotes gastric cancer by negatively regulating tumor suppressor KLF6. Tumour Biol. 33:1589–1597. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Yang Q, Kong WQ, Liu T, Liu M, Li X and Tang H: MicroRNA-181b targets cAMP responsive element binding protein 1 in gastric adenocarcinomas. IUBMB Life. 64:628–635. 2012. View Article : Google Scholar : PubMed/NCBI | |
Xia J, Wu Z, Yu C, He W, Zheng H, He Y, et al: miR-124 inhibits cell proliferation in gastric cancer through down-regulation of SPHK1. J Pathol. 227:470–480. 2012. View Article : Google Scholar : PubMed/NCBI | |
Li C, Nie H, Wang M, Su L, Li J, Yu B, et al: MicroRNA-409-3p regulates cell proliferation and apoptosis by targeting PHF10 in gastric cancer. Cancer Lett. 320:189–197. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kong WQ, Bai R, Liu T, Cai CL, Liu M, Li X and Tang H: MicroRNA-182 targets cAMP-responsive element-binding protein 1 and suppresses cell growth in human gastric adenocarcinoma. FEBS J. 279:1252–1260. 2012. View Article : Google Scholar : PubMed/NCBI | |
Li J, Guo Y, Liang X, Sun M, Wang G, De W and Wu W: MicroRNA-223 functions as an oncogene in human gastric cancer by targeting FBXW7/hCdc4. J Cancer Res Clin Oncol. 138:763–774. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zheng B, Liang L, Huang S, Zha R, Liu L, Jia D, et al: MicroRNA-409 suppresses tumour cell invasion and metastasis by directly targeting radixin in gastric cancers. Oncogene. 31:4509–4516. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhang Z, Liu S, Shi R and Zhao G: miR-27 promotes human gastric cancer cell metastasis by inducing epithelial-to-mesenchymal transition. Cancer Genet. 204:486–491. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wang M, Li C, Nie H, Lv X, Qu Y, Yu B, et al: Down-regulated miR-625 suppresses invasion and metastasis of gastric cancer by targeting ILK. FEBS Lett. 586:2382–2388. 2012. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Cao Y, Jie Z, Liu Y, Li Y, Li J, et al: miR-495 and miR-551a inhibit the migration and invasion of human gastric cancer cells by directly interacting with PRL-3. Cancer Lett. 323:41–47. 2012. View Article : Google Scholar : PubMed/NCBI | |
Liu Z, Zhu J, Cao H, Ren H and Fang X: miR-10b promotes cell invasion through RhoC-AKT signaling pathway by targeting HOXD10 in gastric cancer. Int J Oncol. 40:1553–1560. 2012.PubMed/NCBI | |
Liao YL, Hu LY, Tsai KW, Wu CW, Chan WC, Li SC, et al: Transcriptional regulation of miR-196b by ETS2 in gastric cancer cells. Carcinogenesis. 33:760–769. 2012. View Article : Google Scholar : PubMed/NCBI | |
Gao P, Xing AY, Zhou GY, Zhang TG, Zhang JP, Gao C, et al: The molecular mechanism of microRNA-145 to suppress invasion-metastasis cascade in gastric cancer. Oncogene. 32:491–501. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Zhang J, Wu J, Luo D, Su K, Shi W, et al: MicroRNA-610 inhibits the migration and invasion of gastric cancer cells by suppressing the expression of vasodilator-stimulated phosphoprotein. Eur J Cancer. 48:1904–1913. 2012. View Article : Google Scholar : PubMed/NCBI | |
Leja M, Wex T and Malfertheiner P: Markers for gastric cancer premalignant lesions: where do we go? Dig Dis. 30:268–276. 2012. View Article : Google Scholar : PubMed/NCBI | |
Calin GA and Croce CM: MicroRNA signatures in human cancers. Nat Rev Cancer. 6:857–866. 2006. View Article : Google Scholar : PubMed/NCBI | |
Chan SH, Wu CW, Li AF, Chi CW and Lin WC: miR-21 microRNA expression in human gastric carcinomas and its clinical association. Anticancer Res. 28:907–911. 2008.PubMed/NCBI | |
Xu Y, Sun J, Xu J, Li Q, Guo Y and Zhang Q: miR-21 Is a Promising Novel Biomarker for Lymph Node Metastasis in Patients with Gastric Cancer. Gastroenterol Res Pract. 2012:6401682012.PubMed/NCBI | |
Xiao B, Guo J, Miao Y, Jiang Z, Huan R, Zhang Y, et al: Detection of miR-106a in gastric carcinoma and its clinical significance. Clin Chim Acta. 400:97–102. 2009. View Article : Google Scholar : PubMed/NCBI | |
Chiang Y, Song Y, Wang Z, Chen Y, Yue Z, Xu H, et al: Aberrant expression of miR-203 and its clinical significance in gastric and colorectal cancers. J Gastrointest Surg. 15:63–70. 2011. View Article : Google Scholar : PubMed/NCBI | |
Takagi T, Iio A, Nakagawa Y, Naoe T, Tanigawa N and Akao Y: Decreased expression of microRNA-143 and -145 in human gastric cancers. Oncology. 77:12–21. 2009. View Article : Google Scholar : PubMed/NCBI | |
Su Y, Ni Z, Wang G, Cui J, Wei C, Wang J, et al: Aberrant expression of microRNAs in gastric cancer and biological significance of miR-574-3p. Int Immunopharmacol. 13:468–475. 2012. View Article : Google Scholar : PubMed/NCBI | |
Guo JX, Tao QS, Lou PR, Chen XC, Chen J and Yuan GB: miR-181b as a potential molecular target for anticancer therapy of gastric neoplasms. Asian Pac J Cancer Prev. 13:2263–2267. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhao X, Dou W, He L, Liang S, Tie J, Liu C, et al: MicroRNA-7 functions as an anti-metastatic microRNA in gastric cancer by targeting insulin-like growth factor-1 receptor. Oncogene. 32:1363–1372. 2013. View Article : Google Scholar : PubMed/NCBI | |
Jiang W, Chen X, Liao M, et al: Identification of links between small molecules and miRNAs in human cancers based on transcriptional responses. Sci Rep. 2:2822012. View Article : Google Scholar : PubMed/NCBI | |
Liu T, Tang H, Lang Y, Liu M and Li X: MicroRNA-27a functions as an oncogene in gastric adenocarcinoma by targeting prohibitin. Cancer Lett. 273:233–242. 2009. View Article : Google Scholar : PubMed/NCBI | |
Jiang Z, Guo J, Xiao B, Miao Y, Huang R, Li D and Zhang Y: Increased expression of miR-421 in human gastric carcinoma and its clinical association. J Gastroenterol. 45:17–23. 2010. View Article : Google Scholar : PubMed/NCBI | |
Link A, Kupcinskas J, Wex T, et al: Macro-role of microRNA in gastric cancer. Dig Dis. 30:255–267. 2012. View Article : Google Scholar : PubMed/NCBI | |
Tarasov V, Jung P, Verdoodt B, Lodygin D, Epanchintsev A, Menssen A, et al: Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle. 6:1586–1593. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ji Q, Hao X, Meng Y, Zhang M, Desano J, Fan D and Xu L: Restoration of tumor suppressor miR-34 inhibits human p53-mutant gastric cancer tumorspheres. BMC Cancer. 8:2662008. View Article : Google Scholar : PubMed/NCBI | |
Xia L, Zhang D, Du R, Pan Y, Zhao L, Sun S, et al: miR-15b and miR-16 modulate multidrug resistance by targeting BCL2 in human gastric cancer cells. Int J Cancer. 123:372–379. 2008. View Article : Google Scholar : PubMed/NCBI | |
Shen J, Wan R, Hu G, et al: miR-15b and miR-16 induce the apoptosis of rat activated pancreatic stellate cells by targeting Bcl-2 in vitro. Pancreatology. 12:91–99. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Wang Q, Liu H, Hu B, Zhou W and Cheng Y: MicroRNA expression and its implication for the diagnosis and therapeutic strategies of gastric cancer. Cancer Lett. 297:137–143. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lastraioli E, Romoli MR and Arcangeli A: Immunohistochemical biomarkers in gastric cancer research and management. Int J Surg Oncol. 2012:8686452012.PubMed/NCBI | |
Grady WM and Tewari M: The next thing in prognostic molecular markers: microRNA signatures of cancer. Gut. 59:706–708. 2010. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Jiang M, Yuan W and Tang H: Prognostic value of miR-93 overexpression in resectable gastric adenocarcinomas. Acta Gastroenterol Belg. 75:22–27. 2012.PubMed/NCBI | |
Inoue T, Iinuma H, Ogawa E, Inaba T and Fukushima R: Clinicopathological and prognostic significance of microRNA-107 and its relationship to DICER1 mRNA expression in gastric cancer. Oncol Rep. 27:1759–1764. 2012.PubMed/NCBI | |
Tsai KW, Liao YL, Wu CW, Hu LY, Li SC, Chan WC, et al: Aberrant expression of miR-196a in gastric cancers and correlation with recurrence. Genes Chromosomes Cancer. 51:394–401. 2012. View Article : Google Scholar : PubMed/NCBI | |
Hashiguchi Y, Nishida N, Mimori K, Sudo T, Tanaka F, Shibata K, et al: Down-regulation of miR-125a-3p in human gastric cancer and its clinicopathological significance. Int J Oncol. 40:1477–1482. 2012.PubMed/NCBI | |
Konishi H, Ichikawa D, Komatsu S, Shiozaki A, Tsujiura M, Takeshita H, et al: Detection of gastric cancer-associated microRNAs on microRNA microarray comparing pre- and post-operative plasma. Br J Cancer. 106:740–747. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wang M, Gu H, Wang S, Qian H, Zhu W, Zhang L, et al: Circulating miR-17-5p and miR-20a: molecular markers for gastric cancer. Mol Med Report. 5:1514–1520. 2012.PubMed/NCBI | |
Song MY, Pan KF, Su HJ, Zhang L, Ma JL, Li JY, et al: Identification of serum microRNAs as novel non-invasive biomarkers for early detection of gastric cancer. PLoS One. 7:e336082012. View Article : Google Scholar : PubMed/NCBI | |
Liu H, Zhu L, Liu B, Yang L, Meng X, Zhang W, et al: Genome-wide microRNA profiles identify miR-378 as a serum biomarker for early detection of gastric cancer. Cancer Lett. 316:196–203. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chim SS, Shing TK, Hung EC, Leung TY, Lau TK, Chiu RW and Lo YM: Detection and characterization of placental microRNAs in maternal plasma. Clin Chem. 54:482–490. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ohshima K, Inoue K, Fujiwara A, Hatakeyama K, Kanto K, Watanabe Y, et al: Let-7 microRNA family is selectively secreted into the extracellular environment via exosomes in a metastatic gastric cancer cell line. PLoS One. 5:e132472010. View Article : Google Scholar : PubMed/NCBI |