1
|
Yang J, Yu Y, Hamrick HE and
Duerksen-Hughes PJ: ATM, ATR and DNA-PK: initiators of the cellular
genotoxic stress responses. Carcinogenesis. 24:1571–1580. 2003.
View Article : Google Scholar : PubMed/NCBI
|
2
|
David R: DNA damage response: restricting
repair. Nat Rev Mol Cell Biol. 13:6012012. View Article : Google Scholar : PubMed/NCBI
|
3
|
Schwartz D and Rotter V: p53-dependent
cell cycle control: response to genotoxic stress. Semin Cancer
Biol. 8:325–336. 1998. View Article : Google Scholar : PubMed/NCBI
|
4
|
Surova O and Zhivotovsky B: Various modes
of cell death induced by DNA damage. Oncogene. Dec 3–2012.(Epub
ahead of print).
|
5
|
Helmink BA and Sleckman BP: The response
to and repair of RAG-mediated DNA double-strand breaks. Annu Rev
Immunol. 30:175–202. 2012. View Article : Google Scholar : PubMed/NCBI
|
6
|
Takata M, Sasaki MS, Sonoda E, et al:
Homologous recombination and non-homologous end-joining pathways of
DNA double-strand break repair have overlapping roles in the
maintenance of chromosomal integrity in vertebrate cells. EMBO J.
17:5497–5508. 1998. View Article : Google Scholar
|
7
|
Bennardo N, Cheng A, Huang N and Stark JM:
Alternative-NHEJ is a mechanistically distinct pathway of mammalian
chromosome break repair. PLoS Genet. 4:e10001102008. View Article : Google Scholar : PubMed/NCBI
|
8
|
Panier S and Durocher D: Regulatory
ubiquitylation in response to DNA double-strand breaks. DNA Repair
(Amst). 8:436–443. 2009. View Article : Google Scholar : PubMed/NCBI
|
9
|
Galanty Y, Belotserkovskaya R, Coates J,
Polo S, Miller KM and Jackson SP: Mammalian SUMO E3-ligases PIAS1
and PIAS4 promote responses to DNA double-strand breaks. Nature.
462:935–939. 2009. View Article : Google Scholar : PubMed/NCBI
|
10
|
Galanty Y, Belotserkovskaya R, Coates J
and Jackson SP: RNF4, a SUMO-targeted ubiquitin E3 ligase, promotes
DNA double-strand break repair. Genes Dev. 26:1179–1195. 2012.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Zhu J, Zhu S, Guzzo CM, et al: Small
ubiquitin-related modifier (SUMO) binding determines substrate
recognition and paralog-selective SUMO modification. J Biol Chem.
283:29405–29415. 2008. View Article : Google Scholar : PubMed/NCBI
|
12
|
Sharrocks AD: PIAS proteins and
transcriptional regulation - more than just SUMO E3 ligases. Genes
Dev. 20:754–758. 2006. View Article : Google Scholar : PubMed/NCBI
|
13
|
Polo SE and Jackson SP: Dynamics of DNA
damage response proteins at DNA breaks: a focus on protein
modifications. Genes Dev. 25:409–433. 2011. View Article : Google Scholar : PubMed/NCBI
|
14
|
Yan J, Zhu J, Zhong H, Lu Q, Huang C and
Ye Q: BRCA1 interacts with FHL2 and enhances FHL2 transactivation
function. FEBS Lett. 553:183–189. 2003. View Article : Google Scholar : PubMed/NCBI
|
15
|
Bennardo N, Gunn A, Cheng A, Hasty P and
Stark JM: Limiting the persistence of a chromosome break diminishes
its mutagenic potential. PLoS Genet. 5:e10006832009. View Article : Google Scholar : PubMed/NCBI
|
16
|
Laulier C, Cheng A and Stark JM: The
relative efficiency of homology-directed repair has distinct
effects on proper anaphase chromosome separation. Nucleic Acids
Res. 39:5935–5944. 2011. View Article : Google Scholar
|
17
|
Yunus AA and Lima CD: Structure of the
Siz/PIAS SUMO E3 ligase Siz1 and determinants required for SUMO
modification of PCNA. Mol Cell. 35:669–682. 2009. View Article : Google Scholar : PubMed/NCBI
|
18
|
Rosas-Acosta G, Langereis MA, Deyrieux A
and Wilson VG: Proteins of the PIAS family enhance the sumoylation
of the papillomavirus E1 protein. Virology. 331:190–203. 2005.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Schmidt D and Müller S: Members of the
PIAS family act as SUMO ligases for c-Jun and p53 and repress p53
activity. Proc Natl Acad Sci USA. 99:2872–2877. 2002. View Article : Google Scholar : PubMed/NCBI
|
20
|
Jackson PK: A new RING for SUMO: wrestling
transcriptional responses into nuclear bodies with PIAS family E3
SUMO ligases. Genes Dev. 15:3053–3058. 2001. View Article : Google Scholar : PubMed/NCBI
|
21
|
Duval D, Duval G, Kedinger C, Poch O and
Boeuf H: The ‘PINIT’ motif, of a newly identified conserved domain
of the PIAS protein family, is essential for nuclear retention of
PIAS3L. FEBS Lett. 554:111–118. 2003.
|
22
|
Weitzel JN, Clague J, Martir-Negron A, et
al: Prevalence and type of BRCA mutations in Hispanics undergoing
genetic cancer risk assessment in the southwestern United States: a
report from the Clinical Cancer Genetics Community Research
Network. J Clin Oncol. 31:210–216. 2013. View Article : Google Scholar
|
23
|
Gannon HS, Woda BA and Jones SN: ATM
phosphorylation of Mdm2 Ser394 regulates the amplitude and duration
of the DNA damage response in mice. Cancer Cell. 21:668–679. 2012.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Squatrito M, Brennan CW, Helmy K, Huse JT,
Petrini JH and Holland EC: Loss of ATM/Chk2/p53 pathway components
accelerates tumor development and contributes to radiation
resistance in gliomas. Cancer Cell. 18:619–629. 2010. View Article : Google Scholar : PubMed/NCBI
|
25
|
Rodriguez-Wallberg KA and Oktay K:
Fertility preservation and pregnancy in women with and without BRCA
mutation-positive breast cancer. Oncologist. 17:1409–1417. 2012.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Hartman AR, Kaldate RR, Sailer LM, et al:
Prevalence of BRCA mutations in an unselected population of
triple-negative breast cancer. Cancer. 118:2787–2795. 2012.
View Article : Google Scholar : PubMed/NCBI
|