A new perspective of vasculogenic mimicry: EMT and cancer stem cells (Review)
- Authors:
- Yun‑Long Fan
- Min Zheng
- Ya‑Ling Tang
- Xin‑Hua Liang
-
Affiliations: State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China - Published online on: August 30, 2013 https://doi.org/10.3892/ol.2013.1555
- Pages: 1174-1180
This article is mentioned in:
Abstract
Hillen F and Griffioen AW: Tumour vascularization: sprouting angiogenesis and beyond. Cancer Metastasis Rev. 26:489–502. 2007. View Article : Google Scholar : PubMed/NCBI | |
Maniotis AJ, Folberg R, Hess A, et al: Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am J Pathol. 155:739–752. 1999. View Article : Google Scholar : PubMed/NCBI | |
El Hallani S, Boisselier B, Peglion F, et al: A new alternative mechanism in glioblastoma vascularization: tubular vasculogenic mimicry. Brain. 133:973–982. 2010.PubMed/NCBI | |
van der Schaft DW, Hillen F, Pauwels P, et al: Tumor cell plasticity in Ewing sarcoma, an alternative circulatory system stimulated by hypoxia. Cancer Res. 65:11520–11528. 2005.PubMed/NCBI | |
Shirakawa K, Kobayashi H, Heike Y, et al: Hemodynamics in vasculogenic mimicry and angiogenesis of inflammatory breast cancer xenograft. Cancer Res. 62:560–566. 2002.PubMed/NCBI | |
Ricci-Vitiani L, Lombardi DG, Pilozzi E, et al: Identification and expansion of human colon-cancer-initiating cells. Nature. 445:111–115. 2007. View Article : Google Scholar : PubMed/NCBI | |
Wang W, Lin P, Han C, Cai W, Zhao X and Sun B: Vasculogenic mimicry contributes to lymph node metastasis of laryngeal squamous cell carcinoma. J Exp Clin Cancer Res. 29:602010. View Article : Google Scholar : PubMed/NCBI | |
Upile T, Jerjes W, Radhi H, et al: Vascular mimicry in cultured head and neck tumour cell lines. Head Neck Oncol. 3:552011. View Article : Google Scholar : PubMed/NCBI | |
Lin P, Wang W, Sun BC, et al: Vasculogenic mimicry is a key prognostic factor for laryngeal squamous cell carcinoma: a new pattern of blood supply. Chin Med J (Engl). 125:3445–3449. 2012.PubMed/NCBI | |
Francescone R, Scully S, Bentley B, et al: Glioblastoma-derived tumor cells induce vasculogenic mimicry through Flk-1 protein activation. J Biol Chem. 287:24821–24831. 2012. View Article : Google Scholar : PubMed/NCBI | |
Shirakawa K, Wakasugi H, Heike Y, et al: Vasculogenic mimicry and pseudo-comedo formation in breast cancer. Int J Cancer. 99:821–828. 2002. View Article : Google Scholar : PubMed/NCBI | |
Ponti D, Costa A, Zaffaroni N, et al: Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res. 65:5506–5511. 2005. View Article : Google Scholar : PubMed/NCBI | |
Tang HS, Feng YJ and Yao LQ: Angiogenesis, vasculogenesis, and vasculogenic mimicry in ovarian cancer. Int J Gynecol Cancer. 19:605–610. 2009. View Article : Google Scholar : PubMed/NCBI | |
Su M, Feng YJ, Yao LQ, et al: Plasticity of ovarian cancer cell SKOV3ip and vasculogenic mimicry in vivo. Int J Gynecol Cancer. 18:476–486. 2008. View Article : Google Scholar : PubMed/NCBI | |
Liu Z, Li Y, Zhao W, Ma Y and Yang X: Demonstration of vasculogenic mimicry in astrocytomas and effects of Endostar on U251 cells. Pathol Res Pract. 207:645–651. 2011. View Article : Google Scholar : PubMed/NCBI | |
Baeten CI, Hillen F, Pauwels P, de Bruine AP and Baeten CG: Prognostic role of vasculogenic mimicry in colorectal cancer. Dis Colon Rectum. 52:2028–2035. 2009. View Article : Google Scholar : PubMed/NCBI | |
Warso MA, Maniotis AJ, Chen X, et al: Prognostic significance of periodic acid-Schiff-positive patterns in primary cutaneous melanoma. Clin Cancer Res. 7:473–477. 2001.PubMed/NCBI | |
Folberg R, Rummelt V, Parys-Van Ginderdeuren R, et al: The prognostic value of tumor blood vessel morphology in primary uveal melanoma. Ophthalmology. 100:1389–1398. 1993. View Article : Google Scholar : PubMed/NCBI | |
van der Schaft DW, Seftor RE, Seftor EA, et al: Effects of angiogenesis inhibitors on vascular network formation by human endothelial and melanoma cells. J Natl Cancer Inst. 96:1473–1477. 2004.PubMed/NCBI | |
Kalluri R and Neilson EG: Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest. 112:1776–1784. 2003. View Article : Google Scholar : PubMed/NCBI | |
Eccles SA and Welch DR: Metastasis: recent discoveries and novel treatment strategies. Lancet. 369:1742–1757. 2007. View Article : Google Scholar : PubMed/NCBI | |
Thiery JP, Acloque H, Huang RY and Nieto MA: Epithelial-mesenchymal transitions in development and disease. Cell. 139:871–890. 2009. View Article : Google Scholar : PubMed/NCBI | |
Thiery JP: Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer. 2:442–454. 2002. View Article : Google Scholar : PubMed/NCBI | |
Liu Z, Sun B, Qi L, Li H, Gao J and Leng X: Zinc finger E-box binding homeobox 1 promotes vasculogenic mimicry in colorectal cancer through induction of epithelial-to-mesenchymal transition. Cancer Sci. 103:813–820. 2012. View Article : Google Scholar : PubMed/NCBI | |
Sun T, Zhao N, Zhao XL, et al: Expression and functional significance of Twist1 in hepatocellular carcinoma: its role in vasculogenic mimicry. Hepatology. 51:545–556. 2010. View Article : Google Scholar : PubMed/NCBI | |
Clarke MF, Dick JE, Dirks PB, et al: Cancer stem cells - perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res. 66:9339–9344. 2006. View Article : Google Scholar | |
Shipitsin M and Polyak K: The cancer stem cell hypothesis: in search of definitions, markers, and relevance. Lab Invest. 88:459–463. 2008. View Article : Google Scholar : PubMed/NCBI | |
Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ and Clarke MF: Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA. 100:3983–3988. 2003. View Article : Google Scholar : PubMed/NCBI | |
O’Brien CA, Pollett A, Gallinger S and Dick JE: A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature. 445:106–110. 2007.PubMed/NCBI | |
Rosen JM and Jordan CT: The increasing complexity of the cancer stem cell paradigm. Science. 324:1670–1673. 2009. View Article : Google Scholar : PubMed/NCBI | |
Singh SK, Hawkins C, Clarke ID, et al: Identification of human brain tumour initiating cells. Nature. 432:396–401. 2004. View Article : Google Scholar : PubMed/NCBI | |
Ricci-Vitiani L, Pallini R, Biffoni M, et al: Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature. 468:824–828. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wang R, Chadalavada K, Wilshire J, et al: Glioblastoma stem-like cells give rise to tumour endothelium. Nature. 468:829–833. 2010. View Article : Google Scholar : PubMed/NCBI | |
Dong J, Zhao Y, Huang Q, et al: Glioma stem/progenitor cells contribute to neovascularization via transdifferentiation. Stem Cell Rev. 7:141–152. 2011. View Article : Google Scholar : PubMed/NCBI | |
Mani SA, Guo W, Liao MJ, et al: The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 133:704–715. 2008. View Article : Google Scholar : PubMed/NCBI | |
Morel AP, Lièvre M, Thomas C, Hinkal G, Ansieau S and Puisieux A: Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS One. 3:e28882008. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Li Y, Yu TS, et al: A restricted cell population propagates glioblastoma growth after chemotherapy. Nature. 488:522–526. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lapidot T, Sirard C, Vormoor J, et al: A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 367:645–648. 1994. View Article : Google Scholar : PubMed/NCBI | |
Hemmati HD, Nakano I, Lazareff JA, et al: Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci USA. 100:15178–15183. 2003. View Article : Google Scholar : PubMed/NCBI | |
Singh SK, Clarke ID, Terasaki M, et al: Identification of a cancer stem cell in human brain tumors. Cancer Res. 63:5821–5828. 2003.PubMed/NCBI | |
Fang D, Nguyen TK, Leishear K, et al: A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res. 65:9328–9337. 2005. View Article : Google Scholar : PubMed/NCBI | |
Schatton T, Murphy GF, Frank NY, et al: Identification of cells initiating human melanomas. Nature. 451:345–349. 2008. View Article : Google Scholar : PubMed/NCBI | |
Collins AT, Berry PA, Hyde C, Stower MJ and Maitland NJ: Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res. 65:10946–10951. 2005. View Article : Google Scholar : PubMed/NCBI | |
Bapat SA, Mali AM, Koppikar CB and Kurrey NK: Stem and progenitor-like cells contribute to the aggressive behavior of human epithelial ovarian cancer. Cancer Res. 65:3025–3029. 2005.PubMed/NCBI | |
Alvero AB, Chen R, Fu HH, et al: Molecular phenotyping of human ovarian cancer stem cells unravel the mechanisms for repair and chemo-resistance. Cell Cycle. 8:158–166. 2009. View Article : Google Scholar : PubMed/NCBI | |
Hermann P, Huber S, Herrler T, et al: Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell. 1:313–323. 2007. View Article : Google Scholar : PubMed/NCBI | |
Sun S and Wang Z: Head neck squamous cell carcinoma c-Met(+) cells display cancer stem cell properties and are responsible for cisplatin-resistance and metastasis. Int J Cancer. 129:2337–2348. 2011. | |
Monroe MM, Anderson EC, Clayburgh DR and Wong MH: Cancer stem cells in head and neck squamous cell carcinoma. J Oncol. 2011:7627802011. View Article : Google Scholar : PubMed/NCBI | |
Sayed SI, Dwivedi RC, Katna R, et al: Implications of understanding cancer stem cell (CSC) biology in head and neck squamous cell cancer. Oral Oncol. 47:237–243. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zito G, Richiusa P, Bommarito A, et al: In vitro identification and characterization of CD133(pos) cancer stem-like cells in anaplastic thyroid carcinoma cell lines. PLoS One. 3:e35442008. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Guo LP, Chen LZ, Zeng YX and Lu SH: Identification of cancer stem cell-like side population cells in human nasopharyngeal carcinoma cell line. Cancer Res. 67:3716–3724. 2007. View Article : Google Scholar : PubMed/NCBI | |
Prince ME, Sivanandan R, Kaczorowski A, et al: Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci USA. 104:973–978. 2007. View Article : Google Scholar : PubMed/NCBI | |
Prince ME and Ailles LE: Cancer stem cells in head and neck squamous cell cancer. J Clin Oncol. 26:2871–2875. 2008. View Article : Google Scholar : PubMed/NCBI | |
Balic M, Lin H, Young L, et al: Most early disseminated cancer cells detected in bone marrow of breast cancer patients have a putative breast cancer stem cell phenotype. Clin Cancer Res. 12:5615–5621. 2006. View Article : Google Scholar : PubMed/NCBI | |
Charafe-Jauffret E, Ginestier C, Iovino F, et al: Aldehyde dehydrogenase 1-positive cancer stem cells mediate metastasis and poor clinical outcome in inflammatory breast cancer. Clin Cancer Res. 16:45–55. 2010. View Article : Google Scholar : PubMed/NCBI | |
Davis SJ, Divi V, Owen JH, et al: Metastatic potential of cancer stem cells in head and neck squamous cell carcinoma. Arch Otolaryngol Head Neck Surg. 136:1260–1266. 2010. View Article : Google Scholar : PubMed/NCBI | |
Faber A, Barth C, Hörmann K, et al: CD44 as a stem cell marker in head and neck squamous cell carcinoma. Oncol Rep. 26:321–326. 2011.PubMed/NCBI | |
Song J, Chang I, Chen Z, Kang M and Wang CY: Characterization of side populations in HNSCC: highly invasive, chemoresistant and abnormal Wnt signaling. PLoS One. 5:e114562010. View Article : Google Scholar : PubMed/NCBI | |
Goldie SJ, Mulder KW, Tan DW, Lyons SK, Sims AH and Watt FM: FRMD4A upregulation in human squamous cell carcinoma promotes tumor growth and metastasis and is associated with poor prognosis. Cancer Res. 72:3424–3436. 2012. View Article : Google Scholar : PubMed/NCBI | |
La Fleur L, Johansson AC and Roberg K: A CD44high/EGFRlow subpopulation within head and neck cancer cell lines shows an epithelial-mesenchymal transition phenotype and resistance to treatment. PLoS One. 7:e440712012.PubMed/NCBI | |
Tamara Marie-Egyptienne DT, Lohse I and Hill RP: Cancer stem cells, the epithelial to mesenchymal transition (EMT) and radioresistance: potential role of hypoxia. Cancer Lett. Nov 28–2012.Epub ahead of print. View Article : Google Scholar | |
Todaro M, Alea MP, Di Stefano AB, et al: Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4. Cell Stem Cell. 1:389–402. 2007. View Article : Google Scholar : PubMed/NCBI | |
Cheung ST, Cheung PF, Cheng CK, Wong NC and Fan ST: Granulin-epithelin precursor and ATP-dependent binding cassette (ABC)B5 regulate liver cancer cell chemoresistance. Gastroenterology. 140:344–355. 2011. View Article : Google Scholar : PubMed/NCBI | |
Bussolati B, Grange C, Sapino A and Camussi G: Endothelial cell differentiation of human breast tumour stem/progenitor cells. J Cell Mol Med. 13:309–319. 2009. View Article : Google Scholar : PubMed/NCBI | |
Hendrix MJ, Seftor EA, Meltzer PS, et al: Expression and functional significance of VE-cadherin in aggressive human melanoma cells: role in vasculogenic mimicry. Proc Natl Acad Sci USA. 98:8018–8023. 2001. View Article : Google Scholar : PubMed/NCBI | |
Soda Y, Marumoto T, Friedmann-Morvinski D, et al: Transdifferentiation of glioblastoma cells into vascular endothelial cells. Proc Natl Acad Sci USA. 108:4274–4280. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lai CY, Schwartz BE and Hsu MY: CD133+ melanoma subpopulations contribute to perivascular niche morphogenesis and tumorigenicity through vasculogenic mimicry. Cancer Res. 72:5111–5118. 2012. | |
Frank NY, Schatton T, Kim S, et al: VEGFR-1 expressed by malignant melanoma-initiating cells is required for tumor growth. Cancer Res. 71:1474–1485. 2011. View Article : Google Scholar : PubMed/NCBI | |
Dang D and Ramos DM: Identification of αvβ6-positive stem cells in oral squamous cell carcinoma. Anticancer Res. 29:2043–2049. 2009. | |
Zhang S, Guo H, Zhang D, et al: Microcirculation patterns in different stages of melanoma growth. Oncol Rep. 15:15–20. 2006.PubMed/NCBI | |
Polyak K and Weinberg RA: Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer. 9:265–273. 2009. View Article : Google Scholar : PubMed/NCBI | |
Nguyen PT, Kudo Y, Yoshida M, Kamata N, Ogawa I and Takata T: N-cadherin expression is involved in malignant behavior of head and neck cancer in relation to epithelial-mesenchymal transition. Histol Histopathol. 26:147–156. 2011.PubMed/NCBI | |
Mandal M, Myers JN, Lippman SM, et al: Epithelial to mesenchymal transition in head and neck squamous carcinoma: association of Src activation with E-cadherin down-regulation, vimentin expression, and aggressive tumor features. Cancer. 112:2088–2100. 2008. View Article : Google Scholar | |
Batlle E, Sancho E, Franci C, et al: The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol. 2:84–89. 2000. View Article : Google Scholar : PubMed/NCBI | |
Cano A, Pérez-Moreno MA, Rodrigo I, et al: The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol. 2:76–83. 2000. View Article : Google Scholar : PubMed/NCBI | |
Zhang A, Chen G, Meng L, et al: Antisense-Snail transfer inhibits tumor metastasis by inducing E-cadherin expression. Anticancer Res. 28:621–628. 2008.PubMed/NCBI | |
Hajra KM, Chen DY and Fearon ER: The SLUG zinc-finger protein represses E-cadherin in breast cancer. Cancer Res. 62:1613–1618. 2002.PubMed/NCBI | |
Yang J, Mani SA, Donaher JL, et al: Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell. 117:927–939. 2004. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Liang Q, Lei Y, et al: SOX4 induces epithelial-mesenchymal transition and contributes to breast cancer progression. Cancer Res. 72:4597–4608. 2012. View Article : Google Scholar : PubMed/NCBI | |
Eger A, Aigner K, Sonderegger S, et al: DeltaEF1 is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells. Oncogene. 24:2375–2385. 2005. View Article : Google Scholar : PubMed/NCBI | |
Huber MA, Kraut N and Beug H: Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol. 17:548–558. 2005. View Article : Google Scholar : PubMed/NCBI | |
Porsch H, Bernert B, Mehic M, Theocharis AD, Heldin CH and Heldin P: Efficient TGFbeta-induced epithelial-mesenchymal transition depends on hyaluronan synthase HAS2. Oncogene. Oct 29–2012.(Epub ahead of print). View Article : Google Scholar | |
Wu ZQ, Li XY, Hu CY, Ford M, Kleer CG and Weiss SJ: Canonical Wnt signaling regulates Slug activity and links epithelial-mesenchymal transition with epigenetic Breast Cancer 1, Early Onset (BRCA1) repression. Proc Natl Acad Sci USA. 109:16654–16659. 2012. View Article : Google Scholar : PubMed/NCBI | |
Guaita S, Puig I, Franci C, et al: Snail induction of epithelial to mesenchymal transition in tumor cells is accompanied by MUC1 repression and ZEB1 expression. J Biol Chem. 277:39209–39216. 2002. View Article : Google Scholar : PubMed/NCBI | |
Zhao XL, Sun T, Che N, et al: Promotion of hepatocellular carcinoma metastasis through matrix metalloproteinase activation by epithelial-mesenchymal transition regulator Twist1. J Cell Mol Med. 15:691–700. 2011. View Article : Google Scholar | |
Tsai JH, Donaher JL, Murphy DA, Chau S and Yang J: Spatiotemporal regulation of epithelial-mesenchymal transition is essential for squamous cell carcinoma metastasis. Cancer Cell. 22:725–736. 2012. View Article : Google Scholar : PubMed/NCBI | |
Aigner K, Dampier B, Descovich L, et al: The transcription factor ZEB1 (deltaEF1) promotes tumour cell dedifferentiation by repressing master regulators of epithelial polarity. Oncogene. 26:6979–6988. 2007. View Article : Google Scholar : PubMed/NCBI | |
Wellner U, Schubert J, Burk UC, et al: The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat Cell Biol. 11:1487–1495. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ahn YH, Gibbons DL, Chakravarti D, et al: ZEB1 drives prometastatic actin cytoskeletal remodeling by downregulating miR-34a expression. J Clin Invest. 122:3170–3183. 2012. View Article : Google Scholar : PubMed/NCBI | |
Casas E, Kim J, Bendesky A, Ohno-Machado L, Wolfe CJ and Yang J: Snail2 is an essential mediator of Twist1-induced epithelial mesenchymal transition and metastasis. Cancer Res. 71:245–254. 2011. View Article : Google Scholar : PubMed/NCBI | |
Sun T, Sun BC, Zhao XL, et al: Promotion of tumor cell metastasis and vasculogenic mimicry by way of transcription coactivation by Bcl-2 and Twist1: a study of hepatocellular carcinoma. Hepatology. 54:1690–1706. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lirdprapamongkol K, Chiablaem K, Sila-Asna M, Surarit R, Bunyaratvej A and Svasti J: Exploring stemness gene expression and vasculogenic mimicry capacity in well- and poorly-differentiated hepatocellular carcinoma cell lines. Biochem Biophys Res Commun. 422:429–435. 2012. View Article : Google Scholar : PubMed/NCBI | |
Passegué E, Jamieson CH, Ailles LE and Weissman IL: Normal and leukemic hematopoiesis: are leukemias a stem cell disorder or a reacquisition of stem cell characteristics? Proc Natl Acad Sci USA. 100(Suppl 1): 11842–11849. 2003. | |
Prindull G: Hypothesis: cell plasticity, linking embryonal stem cells to adult stem cell reservoirs and metastatic cancer cells? Exp Hematol. 33:738–746. 2005. View Article : Google Scholar : PubMed/NCBI | |
Notta F, Mullighan CG, Wang JC, et al: Evolution of human BCR-ABL1 lymphoblastic leukaemia-initiating cells. Nature. 469:362–367. 2011. View Article : Google Scholar : PubMed/NCBI | |
Biddle A, Liang X, Gammon L, et al: Cancer stem cells in squamous cell carcinoma switch between two distinct phenotypes that are preferentially migratory or proliferative. Cancer Res. 71:5317–5326. 2011. View Article : Google Scholar : PubMed/NCBI | |
Damonte P, Gregg JP, Borowsky AD, Keister BA and Cardiff RD: EMT tumorigenesis in the mouse mammary gland. Lab Invest. 87:1218–1226. 2007. View Article : Google Scholar : PubMed/NCBI | |
Santisteban M, Reiman JM, Asiedu MK, et al: Immune-induced epithelial to mesenchymal transition in vivo generates breast cancer stem cells. Cancer Res. 69:2887–2895. 2009. View Article : Google Scholar : PubMed/NCBI | |
Fang X, Cai Y, Liu J, et al: Twist2 contributes to breast cancer progression by promoting an epithelial-mesenchymal transition and cancer stem-like cell self-renewal. Oncogene. 30:4707–4720. 2011. View Article : Google Scholar : PubMed/NCBI | |
Asiedu MK, Ingle JN, Behrens MD, Radisky DC and Knutson KL: TGFbeta/TNF(alpha)-mediated epithelial-mesenchymal transition generates breast cancer stem cells with a claudin-low phenotype. Cancer Res. 71:4707–4719. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ryu HS, Park do J, Kim HH, Kim WH and Lee HS: Combination of epithelial-mesenchymal transition and cancer stem cell-like phenotypes has independent prognostic value in gastric cancer. Hum Pathol. 43:520–528. 2012. View Article : Google Scholar : PubMed/NCBI | |
Sarkar D, Shields B, Davies ML, Muller J and Wakeman JA: BRACHYURY confers cancer stem cell characteristics on colorectal cancer cells. Int J Cancer. 130:328–337. 2012. View Article : Google Scholar : PubMed/NCBI | |
Xia H, Cheung WK, Sze J, et al: miR-200a regulates epithelial-mesenchymal to stem-like transition via ZEB2 and beta-catenin signaling. J Biol Chem. 285:36995–37004. 2010. View Article : Google Scholar : PubMed/NCBI | |
Chen YC, Chen YW, Hsu HS, et al: Aldehyde dehydrogenase 1 is a putative marker for cancer stem cells in head and neck squamous cancer. Biochem Biophys Res Commun. 385:307–313. 2009. View Article : Google Scholar : PubMed/NCBI | |
Chen YS, Wu MJ, Huang CY, et al: CD133/Src axis mediates tumor initiating property and epithelial-mesenchymal transition of head and neck cancer. PLoS One. 6:e280532011. View Article : Google Scholar : PubMed/NCBI | |
Hendrix MJ, Seftor EA, Hess AR and Seftor RE: Vasculogenic mimicry and tumour-cell plasticity: lessons from melanoma. Nat Rev Cancer. 3:411–421. 2003. View Article : Google Scholar : PubMed/NCBI | |
Pisacane AM, Picciotto F and Risio M: CD31 and CD34 expression as immunohistochemical markers of endothelial transdifferentiation in human cutaneous melanoma. Cell Oncol. 29:59–66. 2007.PubMed/NCBI | |
Garnier D, Milsom C, Magnus N, et al: Role of the tissue factor pathway in the biology of tumor initiating cells. Thromb Res. 125(Suppl 2): S44–S50. 2010. View Article : Google Scholar : PubMed/NCBI | |
Gill JG, Langer EM, Lindsley RC, Cai M, Murphy TL and Murphy KM: Snail promotes the cell-autonomous generation of Flk1(+) endothelial cells through the repression of the microRNA-200 family. Stem Cells Dev. 21:167–176. 2012.PubMed/NCBI | |
Sun B, Zhang D, Zhang S, Zhang W, Guo H and Zhao X: Hypoxia influences vasculogenic mimicry channel formation and tumor invasion-related protein expression in melanoma. Cancer Lett. 249:188–197. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ma JL, Han SX, Zhu Q, et al: Role of Twist in vasculogenic mimicry formation in hypoxic hepatocellular carcinoma cells in vitro. Biochem Biophys Res Commun. 408:686–691. 2011. View Article : Google Scholar : PubMed/NCBI | |
Comito G, Calvani M, Giannoni E, et al: HIF-1alpha stabilization by mitochondrial ROS promotes Met-dependent invasive growth and vasculogenic mimicry in melanoma cells. Free Radic Biol Med. 51:893–904. 2011. View Article : Google Scholar : PubMed/NCBI | |
Misra RM, Bajaj MS and Kale VP: Vasculogenic Mimicry of HT1080 Tumour Cells In Vivo: Critical Role of HIF-1alpha-Neuropilin-1 Axis. PLoS One. 7:e501532012. View Article : Google Scholar : PubMed/NCBI | |
Jiang J, Tang YL and Liang XH: EMT: a new vision of hypoxia promoting cancer progression. Cancer Biol Ther. 11:714–723. 2011. View Article : Google Scholar : PubMed/NCBI | |
Bao B, Azmi AS, Ali S, et al: The biological kinship of hypoxia with CSC and EMT and their relationship with deregulated expression of miRNAs and tumor aggressiveness. Biochim Biophys Acta. 1826:272–296. 2012.PubMed/NCBI | |
Carmeliet P and Jain RK: Angiogenesis in cancer and other diseases. Nature. 407:249–257. 2000. View Article : Google Scholar : PubMed/NCBI | |
Xu X and Prestwich GD: Inhibition of tumor growth and angiogenesis by a lysophosphatidic acid antagonist in an engineered three-dimensional lung cancer xenograft model. Cancer. 116:1739–1750. 2010. View Article : Google Scholar : PubMed/NCBI | |
Keunen O, Johansson M, Oudin A, et al: Anti-VEGF treatment reduces blood supply and increases tumor cell invasion in glioblastoma. Proc Natl Acad Sci USA. 108:3749–3754. 2011. View Article : Google Scholar : PubMed/NCBI | |
Qu B, Guo L, Ma J and Lv Y: Antiangiogenesis therapy might have the unintended effect of promoting tumor metastasis by increasing an alternative circulatory system. Med Hypotheses. 74:360–361. 2010. View Article : Google Scholar : PubMed/NCBI | |
Cao G, Fehrenbach ML, Williams JT, Finklestein JM, Zhu JX and Delisser HM: Angiogenesis in platelet endothelial cell adhesion molecule-1-null mice. Am J Pathol. 175:903–915. 2009. View Article : Google Scholar : PubMed/NCBI |