1
|
Bánóczy J and Csiba A: Occurrence of
epithelial dysplasia in oral leukoplakia. Analysis and follow-up
study of 12 cases. Oral Surg Oral Med Oral Pathol. 42:766–774.
1976.
|
2
|
van der Waal I: Potentially malignant
disorders of the oral and oropharyngeal mucosa; terminology,
classification and present concepts of management. Oral Oncol.
45:317–323. 2009.
|
3
|
Gupta PC, Mehta FS, Daftary DK, et al:
Incidence rates of oral cancer and natural history of oral
precancerous lesions in a 10-year follow-up study of Indian
villagers. Community Dent Oral Epidemiol. 8:283–333.
1980.PubMed/NCBI
|
4
|
Silverman S Jr, Gorsky M and Lozada F:
Oral leukoplakia and malignant transformation. A follow-up study of
257 patients. Cancer. 53:563–568. 1984. View Article : Google Scholar : PubMed/NCBI
|
5
|
Bouquot JE and Whitaker SB: Oral
leukoplakia - rationale for diagnosis and prognosis of its clinical
subtypes or ‘phases’. Quintessence Int. 25:133–140. 1994.PubMed/NCBI
|
6
|
Napier SS and Speight PM: Natural history
of potentially malignant oral lesions and conditions: an overview
of the literature. J Oral Pathol Med. 37:1–10. 2008. View Article : Google Scholar : PubMed/NCBI
|
7
|
Piemonte ED, Lazos JP and Brunotto M:
Relationship between chronic trauma of the oral mucosa, oral
potentially malignant disorders and oral cancer. J Oral Pathol Med.
39:513–517. 2010.PubMed/NCBI
|
8
|
Reibel J: Prognosis of oral pre-malignant
lesions: significance of clinical, histopathological, and molecular
biological characteristics. Crit Rev Oral Biol Med. 14:47–62. 2003.
View Article : Google Scholar
|
9
|
Imoto I, Pimkhaokham A, Watanabe T, et al:
Amplification and overexpression of TGIF2, a novel homeobox gene of
the TALE superclass, in ovarian cancer cell lines. Biochem Biophys
Res Commun. 276:264–270. 2000. View Article : Google Scholar : PubMed/NCBI
|
10
|
Lamonerie T, Tremblay JJ, Lanctôt C, et
al: Ptx1, a bicoid-related homeo box transcription factor involved
in transcription of the pro-opiomelanocortin gene. Genes Dev.
10:1284–1295. 1996. View Article : Google Scholar : PubMed/NCBI
|
11
|
DeLaurier A, Schweitzer R and Logan M:
Pitx1 determines the morphology of muscle, tendon, and bones of the
hindlimb. Dev Biol. 299:22–34. 2006. View Article : Google Scholar : PubMed/NCBI
|
12
|
Shang J, Li X, Ring HZ, et al: Backfoot, a
novel homeobox gene, maps to human chromosome 5 (BFT) and mouse
chromosome 13 (Bft). Genomics. 40:108–113. 1997. View Article : Google Scholar : PubMed/NCBI
|
13
|
Lanctôt C, Moreau A, Chamberland M, et al:
Hindlimb patterning and mandible development require the Ptx1 gene.
Development. 126:1805–1810. 1999.PubMed/NCBI
|
14
|
Shang J, Luo Y and Clayton DA: Backfoot is
a novel homeobox gene expressed in the mesenchyme of developing
hindlimb. Dev Dyn. 209:242–253. 1997. View Article : Google Scholar : PubMed/NCBI
|
15
|
Libório TN, Acquafreda T,
Matizonkas-Antonio LF, et al: In situ hybridization detection of
homeobox genes reveals distinct expression patterns in oral
squamous cell carcinomas. Histopathology. 58:225–233.
2011.PubMed/NCBI
|
16
|
Lord RV, Brabender J, Wickramasinghe K, et
al: Increased CDX2 and decreased PITX1 homeobox gene expression in
Barrett’s esophagus and Barrett’s-associated adenocarcinoma.
Surgery. 138:924–931. 2005.PubMed/NCBI
|
17
|
Chen YN, Chen H, Xu Y, et al: Expression
of pituitary homeobox 1 gene in human gastric carcinogenesis and
its clinicopathological significance. World J Gastroenterol.
14:292–297. 2008. View Article : Google Scholar : PubMed/NCBI
|
18
|
Qi DL, Ohhira T, Fujisaki C, et al:
Identification of PITX1 as a TERT suppressor gene located on human
chromosome 5. Mol Cell Biol. 31:1624–1636. 2011. View Article : Google Scholar : PubMed/NCBI
|
19
|
Chen Y, Knösel T, Ye F, et al: Decreased
PITX1 homeobox gene expression in human lung cancer. Lung Cancer.
55:287–294. 2007. View Article : Google Scholar : PubMed/NCBI
|
20
|
Stender JD, Stossi F, Funk CC, et al: The
estrogen-regulated transcription factor PITX1 coordinates
gene-specific regulation by estrogen receptor-alpha in breast
cancer cells. Mol Endocrinol. 25:1699–1709. 2011. View Article : Google Scholar
|
21
|
Calvisi DF, Ladu S, Conner EA, et al:
Inactivation of Ras GTPase-activating proteins promotes
unrestrained activity of wild-type Ras in human liver cancer. J
Hepatol. 54:311–319. 2011. View Article : Google Scholar
|
22
|
Knösel T, Chen Y, Hotovy S, et al: Loss of
desmocollin 1–3 and homeobox genes PITX1 and CDX2 are associated
with tumor progression and survival in colorectal carcinoma. Int J
Colorectal Dis. 27:1391–1399. 2012.
|
23
|
Hamidov Z, Altendorf-Hofmann A, Chen Y, et
al: Reduced expression of desmocollin 2 is an independent
prognostic biomarker for shorter patients survival in pancreatic
ductal adenocarcinoma. J Clin Pathol. 64:990–994. 2011. View Article : Google Scholar
|
24
|
Kwok SC, Liu X, Mangel P and Daskal I:
PTX1(ERGIC2)-VP22 fusion protein upregulates interferon-beta in
prostate cancer cell line PC-3. DNA Cell Biol. 25:523–529. 2006.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Osaki M, Chinen H, Yoshida Y, et al:
Decreased PITX1 gene expression in human cutaneous malignant
melanoma and its clinicopathological significance. Eur J Dermatol.
Jun 28–2013.(Epub ahead of print).
|
26
|
Pindborg JJ, Smith CJ and van der Waal I:
Histological typing of cancer and precancer of the oral mucosa (2nd
edition), World Health Organization. Springer-Verlag; Berlin: pp.
24–40. 1997
|
27
|
Kodani I, Shomori K, Osaki M, et al:
Expression of minichromosome maintenance 2 (MCM2), Ki-67, and
cell-cycle-related molecules, and apoptosis in the
normal-dysplasia-carcinoma sequence of the oral mucosa.
Pathobiology. 69:150–158. 2001. View Article : Google Scholar
|
28
|
Gouvêa AF, Vargas PA, Coletta RD, et al:
Clinicopathological features and immunohistochemical expression of
p53, Ki-67, Mcm-2 and Mcm-5 in proliferative verrucous leukoplakia.
J Oral Pathol Med. 39:447–452. 2010.PubMed/NCBI
|
29
|
Nasser W, Flechtenmacher C, Holzinger D,
et al: Aberrant expression of p53, p16INK4a and Ki-67 as basic
biomarker for malignant progression of oral leukoplakias. J Oral
Pathol Med. 40:629–635. 2011. View Article : Google Scholar : PubMed/NCBI
|
30
|
Nogami T, Kuyama K and Yamamoto H:
Histopathological and immunohistochemical study of malignant
transformation of oral leukoplakia, with special reference to
apoptosis-related gene products and proliferative activity. Acta
Otolaryngol. 123:767–775. 2003.
|
31
|
Matsubara R, Kuwano S, Kiyosue T, et al:
Increased ΔNp63 expression is predictive of malignant
transformation in oral epithelial dysplasia and poor prognosis in
oral squamous cell carcinoma. Int J Oncol. 39:1391–1399. 2011.
|
32
|
Thomson PJ, Soames JV, Booth C and O’Shea
JA: Epithelial cell proliferative activity and oral cancer
progression. Cell Prolif. 35(Suppl 1): S110–S120. 2002. View Article : Google Scholar
|
33
|
Kumar P, Kane S and Rathod GP:
Coexpression of p53 and Ki 67 and lack of c-erbB2 expression in
oral leukoplakias in India. Braz Oral Res. 26:228–234. 2012.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Iamaroon A, Khemaleelakul U, Pongsiriwet S
and Pintong J: Co-expression of p53 and Ki67 and lack of EBV
expression in oral squamous cell carcinoma. J Oral Pathol Med.
33:30–36. 2004. View Article : Google Scholar : PubMed/NCBI
|
35
|
Gerdes J, Lemke H, Baisch H, et al: Cell
cycle analysis of a cell proliferation-associated human nuclear
antigen defined by the monoclonal antibody Ki-67. J Immunol.
133:1710–1715. 1984.PubMed/NCBI
|
36
|
Oliveira LR and Ribeiro-Silva A:
Prognostic significance of immunohistochemical biomarkers in oral
squamous cell carcinoma. Int J Oral Maxillofac Surg. 40:298–307.
2011. View Article : Google Scholar : PubMed/NCBI
|
37
|
Kolfschoten IG, van Leeuwen B, Berns K, et
al: A genetic screen identifies PITX1 as a suppressor of RAS
activity and tumorigenicity. Cell. 121:849–858. 2005. View Article : Google Scholar : PubMed/NCBI
|