Molecular mechanisms of chemoresistance in osteosarcoma (Review)
- Authors:
- Hongtao He
- Jiangdong Ni
- Jun Huang
-
Affiliations: Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China - Published online on: March 4, 2014 https://doi.org/10.3892/ol.2014.1935
- Pages: 1352-1362
This article is mentioned in:
Abstract
Chou AJ and Gorlick R: Chemotherapy resistance in osteosarcoma: current challenges and future directions. Expert Rev Anticancer There. 6:1075–1085. 2006. View Article : Google Scholar : PubMed/NCBI | |
Longhi A, Errani C, De Paolis M, Mercuri M and Bacci G: Primary bone osteosarcoma in the pediatric age: state of the art. Cancer Treat Rev. 32:423–436. 2006. View Article : Google Scholar : PubMed/NCBI | |
Chou AJ, Geller DS and Gorlick R: Therapy for osteosarcoma: where do we go from here? Paediatr Drugs. 10:315–327. 2008. View Article : Google Scholar | |
Eilber FR and Rosen G: Adjuvant chemotherapy for osteosarcoma. Semin Oncol. 16:312–322. 1989.PubMed/NCBI | |
Sakamoto A and Iwamoto Y: Current status and perspectives regarding the treatment of osteo-sarcoma: chemotherapy. Rev Recent Clin Trials. 3:228–231. 2008. View Article : Google Scholar : PubMed/NCBI | |
Bertino JR: Karnofsky memorial lecture. Ode to methotrexate. J Clin Oncol. 11:5–14. 1993.PubMed/NCBI | |
Hattinger CM, Reverter-Branchat G, Remondini D, et al: Genomic imbalances associated with methotrexate resistance in human osteosarcoma cell lines detected by comparative genomic hybridization-based techniques. Eur J Cell Biol. 82:483–493. 2003. View Article : Google Scholar | |
Guo W, Healey JH, Meyers PA, Ladanyi M, Huvos AG, Bertino JR and Gorlick R: Mechanisms of methotrexate resistance in osteosarcoma. Clin Cancer Res. 5:621–627. 1999. | |
Patiño-García A, Zalacaín M, Marrodán L, San-Julián M and Sierrasesúmaga L: Methotrexate in pediatric osteosarcoma: response and toxicity in relation to genetic polymorphisms and dihydrofolate reductase and reduced folate carrier 1 expression. J Pediatr. 154:688–693. 2009. | |
Ifergan I, Meller I, Issakov J and Assaraf YG: Reduced folate carrier protein expression in osteosarcoma: implications for the prediction of tumor chemosensitivity. Cancer. 98:1958–1966. 2003. View Article : Google Scholar | |
Flintoff WF, Sadlish H, Gorlick R, Yang R and Williams FM: Functional analysis of altered reduced folate carrier sequence changes identified in osteosarcomas. Biochim Biophys Acta. 1690:110–117. 2004. View Article : Google Scholar | |
Serra M, Reverter-Branchat G, Maurici D, et al: Analysis of dihydrofolate reductase and reduced folate carrier gene status in relation to methotrexate resistance in osteosarcoma cells. Ann Oncol. 15:151–160. 2004. View Article : Google Scholar : PubMed/NCBI | |
Yang R, Sowers R, Mazza BA, et al: Sequence alterations in the reduced folate carrier are observed in osteosarcoma tumor samples. Clin Cancer Res. 9:837–844. 2003. | |
Trippett T, Meyers P, Gorlick R, et al: High dose trimetrexate with leucovorin protection in recurrent childhood malignancies: a phase II trial. J Clin Oncol (ASCO Annual Meeting Abstracts). 9:8891999. | |
Weinstein RS, Kuszak JR, Kluskens LF and Coon JS: P-glycoproteins in pathology: the multidrug resistance gene family in humans. Hum Pathol. 21:34–48. 1990. View Article : Google Scholar | |
Safa AR, Stern RK, Choi K, et al: Molecular basis of preferential resistance to colchicine in multidrug-resistant human cells conferred by Gly-185→Val-185 substitution in P-glycoprotein. Proc Natl Acad Sci USA. 87:7225–7229. 1990.PubMed/NCBI | |
Bramwell VH: osteosarcomas and other cancers of bone. Curr Opin Oncol. 12:330–336. 2000. View Article : Google Scholar : PubMed/NCBI | |
Park YB, Kim HS, Oh JH and Lee SH: The co-expression of p53 protein and P-glycoprotein is correlated to a poor prognosis in osteosarcoma. Int Orthop. 24:307–310. 2001. View Article : Google Scholar : PubMed/NCBI | |
Gomes CM, van Paassen H, Romeo S, et al: Multidrug resistance mediated by ABC transporters in osteosarcoma cell lines: mRNA analysis and functional radiotracer studies. Nucl Med Biol. 33:831–840. 2006. View Article : Google Scholar | |
Serra M, Pasello M, Manara MC, et al: May P-glycoprotein status be used to stratify high-grade osteosarcoma patients? Results from the Italian/Scandinavian Sarcoma Group 1 treatment protocol. Int J Oncol. 29:1459–1468. 2006. | |
Baldini N, Scotlandi K, Serra M, Picci P, Bacci G, Sottili S and Campanacci M: P-glycoprotein expression in osteosarcoma: a basis for risk-adapted adjuvant chemotherapy. J Orthop Res. 17:629–632. 1999. View Article : Google Scholar : PubMed/NCBI | |
Kusuzaki K, Hirata M, Takeshita H, Murata H, Hashiguchi S, Ashihara T and Hirasawa Y: Relationship between P-glycoprotein positivity, doxorubicin binding ability and histologic response to chemotherapy in osteosarcomas. Cancer Lett. 138:203–208. 1999. View Article : Google Scholar | |
Trammell RA, Johnson CB, Barker JR, Bell RS and Allan DG: Multidrug resistance-1 gene expression does not increase during tumor progression in the MGH-OGS murine osteosarcoma tumor model. J Orthop Res. 18:449–455. 2000. View Article : Google Scholar : PubMed/NCBI | |
Wunder JS, Bull SB, Aneliunas V, et al: MDR1 gene expression and outcome in osteosarcoma: a prospective, multicenter study. J Clin Oncol. 18:2685–2694. 2000.PubMed/NCBI | |
Pakos EE and Ioannidis JP: The association of P-glycoprotein with response to chemotherapy and clinical outcome in patients with osteosarcoma. A meta-analysis. Cancer. 98:581–589. 2003. View Article : Google Scholar : PubMed/NCBI | |
Sorensen FB, Jensen K, Vaeth M, et al: Immunohistochemical estimates of angiogenesis, proliferative activity, p53 expression, and multiple drug resistance have no prognostic impact in osteosarcoma: A comparative clinicopathological investigation. Sarcoma. 2008:8740752008. View Article : Google Scholar | |
Takeshita H, Kusuzaki K, Murata H, et al: Osteoblastic differentiation and P-glycoprotein multidrug resistance in a murine osteosarcoma model. Br J Cancer. 82:1327–1331. 2000. View Article : Google Scholar : PubMed/NCBI | |
Susa M, Iyer AK, Ryu K, Choy E, Hornicek FJ, Mankin H, Milane L, Amiji MM and Duan Z: Inhibition of ABCB1 (MDR1) expression by an siRNA nanoparticulate delivery system to overcome drug resistance in osteosarcoma. PLoS One. 5:e107642010. View Article : Google Scholar : PubMed/NCBI | |
Susa M, Iyer AK, Ryu K, Hornicek FJ, Mankin H, Amiji MM and Duan Z: Doxorubicin loaded polymeric nanoparticulate delivery system to overcome drug resistance in osteosarcoma. BMC Cancer. 9:3992009. View Article : Google Scholar : PubMed/NCBI | |
Kobayashi E, Iyer AK, Hornicek FJ, Amiji MM and Duan Z: Lipid-functionalized dextran nanosystems to overcome multidrug resistance in cancer: a pilot study. Clin Orthop Relat Res. 471:915–925. 2013. View Article : Google Scholar | |
Townsend DM and Tew KD: The role of glutathione-S-transferase in anti-cancer drug resistance. Oncogene. 22:7369–7375. 2003. View Article : Google Scholar : PubMed/NCBI | |
Tew KD: Glutathione-associated enzymes in anticancer drug resistance. Cancer Res. 54:4313–4320. 1994.PubMed/NCBI | |
Shoieb A and Hahn K: Detection and significance of glutathione-S-transferase pi in osteogenic tumors of dogs. Int J Oncol. 10:635–639. 1997. | |
Uozaki H, Horiuchi H, Ishida T, Iijima T, Imamura T and Machinami R: Overexpression of resistance-related proteins (metallothioneins, glutathione-S-transferase pi, heat shock protein 27, and lung resistance-related protein) in osteosarcoma. Relationship with poor prognosis. Cancer. 79:2336–2344. 1997. View Article : Google Scholar | |
Wei L, Song XR, Wang XW, Li M and Zuo WS: Expression of MDR1 and GST-pi in osteosarcoma and soft tissue sarcoma and their correlation with chemotherapy resistance. Zhonghua Zhong Liu Za Zhi. 28:445–448. 2006.(In Chinese). | |
Bruheim S, Bruland OS, Breistol K, Maelandsmo GM and Fodstad O: Human osteosarcoma xenografts and their sensitivity to chemotherapy. Pathol Oncol Res. 10:133–141. 2004. View Article : Google Scholar : PubMed/NCBI | |
Huang G, Mills L and Worth LL: Expression of human glutathione S-transferase P1 mediates the chemosensitivity of osteosarcoma cells. Mol Cancer Ther. 6:1610–1619. 2007. View Article : Google Scholar : PubMed/NCBI | |
Windsor RE, Strauss SJ, Kallis C, Wood NE and Whelan JS: Germline genetic polymorphisms may influence chemotherapy response and disease outcome in osteosarcoma: a pilot study. Cancer. 118:1856–1867. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhang SL, Mao NF, Sun JY, Shi ZC, Wang B and Sun YJ: Predictive potential of glutathione S-transferase polymorphisms for prognosis of osteosarcoma patients on chemotherapy. Asian Pac J Cancer Prev. 13:2705–2709. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yang LM, Li XH and Bao CF: Glutathione S-transferase P1 and DNA polymorphisms influence response to chemotherapy and prognosis of bone tumors. Asian Pac J Cancer Prev. 13:5883–5886. 2012. View Article : Google Scholar : PubMed/NCBI | |
Pasello M, Michelacci F, Scionti I, Hattinger CM, Zuntini M, Caccuri AM, Scotlandi K, Picci P and Serra M: Overcoming glutathione S-transferase P1-related cisplatin resistance in osteosarcoma. Cancer Res. 68:6661–6668. 2008. View Article : Google Scholar : PubMed/NCBI | |
Pasello M, Manara MC, Michelacci F, et al: Targeting glutathione-S transferase enzymes in musculoskeletal sarcomas: a promising therapeutic strategy. Anal Cell Pathol (Amst). 34:131–145. 2011. View Article : Google Scholar : PubMed/NCBI | |
Sau A, Filomeni G, Pezzola S, et al: Targeting GSTP1-1 induces JNK activation and leads to apoptosis in cisplatin-sensitive and -resistant human osteosarcoma cell lines. Mol Biosyst. 8:994–1006. 2012. View Article : Google Scholar : PubMed/NCBI | |
Sak SC, Harnden P, Johnston CF, Paul AB and Kiltie AE: APE1 and XRCC1 protein expression levels predict cancer-specific survival following radical radiotherapy in bladder cancer. Clin Cancer Res. 11:6205–6211. 2005. View Article : Google Scholar | |
Evans AR, Limp-Foster M and Kelley MR: Going APE over ref-1. Mutat Res. 461:83–108. 2000. View Article : Google Scholar | |
Silber JR, Bobola MS, Blank A, Schoeler KD, Haroldson PD, Huynh MB and Kolstoe DD: The apurinic/apyrimidinic endonuclease activity of Ape1/Ref-1 contributes to human glioma cell resistance to alkylating agents and is elevated by oxidative stress. Clin Cancer Res. 8:3008–3018. 2002. | |
Yang S, Irani K, Heffron SE, Jurnak F and Meyskens FL Jr: Alterations in the expression of the apurinic/apyrimidinic endonuclease-1/redox factor-1 (Ape/Ref-1) in human melanoma and identification of the therapeutic potential of resveratrol as an Ape1/Ref-1 inhibitor. Mol Cancer Ther. 4:1923–1935. 2005. View Article : Google Scholar : PubMed/NCBI | |
Wang D, Luo M and Kelley MR: Human apurinic endonuclease 1 (APE1) expression and prognostic significance in osteosarcoma: enhanced sensitivity of osteosarcoma to DNA damaging agents using silencing RNA APE1 expression inhibition. Mol Cancer Ther. 3:679–686. 2004. | |
Wang D, Zhong ZY, Li MX, Xiang DB and Li ZP: Vector-based Ape1 small interfering RNA enhances the sensitivity of human osteosarcoma cells to endostatin in vivo. Cancer Sci. 98:1993–2001. 2007. View Article : Google Scholar : PubMed/NCBI | |
Yang JL, Yang D, Cogdell D, et al: APEX1 gene amplification and its protein overexpression in osteosarcoma: correlation with recurrence, metastasis, and survival. Technol Cancer Res Treat. 9:161–169. 2010. View Article : Google Scholar | |
Luo M and Kelley MR: Inhibition of the human apurinic/apyrimidinic endonuclease (APE1) repair activity and sensitization of breast cancer cells to DNA alkylating agents with lucanthone. Anticancer Res. 24:2127–2134. 2004.PubMed/NCBI | |
Madhusudan S, Smart F, Shrimpton P, et al: Isolation of a small molecule inhibitor of base excision repair. Nucleic Acids Res. 33:4711–4724. 2005. View Article : Google Scholar : PubMed/NCBI | |
Seiple LA, Cardellina JH II, Akee R and Stivers JT: Potent inhibition of human apurinic/apyrimidinic endonuclease 1 by arylstibonic acids. Mol Pharmacol. 73:669–677. 2008. View Article : Google Scholar | |
Fishel ML and Kelley MR: The DNA base excision repair protein Ape1/Ref-1 as a therapeutic and chemopreventive target. Mol Aspects Med. 28:375–395. 2007. View Article : Google Scholar : PubMed/NCBI | |
Nathrath M, Kremer M, Letzel H, Remberger K, Höfler H and Ulle T: Expression of genes of potential importance in the response to chemotherapy in osteosarcoma patients. Klin Padiatr. 214:230–235. 2002.(In German). | |
Li X, Guo W, Shen DH, Yang RL, Liu J and Zhao H: Expressions of ERCC2 and ERCC4 genes in osteosarcoma and peripheral blood lymphocytes and their clinical significance. Beijing Da Xue Xue Bao. 39:467–471. 2007.(In Chinese). | |
Caronia D, Patiño-García A, Milne RL, Zalacain-Díez M, Pita G, Alonso MR, Moreno LT, et al: Common variations in ERCC2 are associated with response to cisplatin chemotherapy and clinical outcome in osteosarcoma patients. Pharmacogenomics J. 9:347–353. 2009. View Article : Google Scholar : PubMed/NCBI | |
Biason P, Hattinger CM, Innocenti F, Talamini R, Alberghini M, Scotlandi K, Zanusso C, Serra M and Toffoli G: Nucleotide excision repair gene variants and association with survival in osteosarcoma patients treated with neoadjuvant chemotherapy. Pharmacogenomics J. 12:476–483. 2012. View Article : Google Scholar : PubMed/NCBI | |
Hao T, Feng W, Zhang J, Sun YJ and Wang G: Association of four ERCC1 and ERCC2 SNPs with survival of bone tumour patients. Asian Pac J Cancer Prev. 13:3821–3824. 2012. View Article : Google Scholar : PubMed/NCBI | |
Meric-Bernstam F and Gonzalez-Angulo AM: Targeting the mTOR signaling network for cancer therapy. J Clin Oncol. 27:2278–2287. 2009. View Article : Google Scholar : PubMed/NCBI | |
Gordon IK, Ye F and Kent MS: Evaluation of the mammalian target of rapamycin pathway and the effect of rapamycin on target expression and cellular proliferation in osteosarcoma cells from dogs. Am J Vet Res. 69:1079–1084. 2008. View Article : Google Scholar | |
Gazitt Y, Kolapathi V, Moncada K, Thomas C and Freeman J: Targeted therapy of human osteosarcoma with 17AAG or rapamycin: characterization of induced apoptosis and inhibition of mTOR and Akt/MAPK/Wnt pathways. Int J Oncol. 34:551–561. 2009. | |
Zhou Q, Deng Z, Zhu Y, Long H, Zhang S and Zhao J: mTOR/p70S6K signal transduction pathway contributes to osteosarcoma progression and patients’ prognosis. Med Oncol. 27:1239–1245. 2010. | |
Houghton PJ, Morton CL, Kolb EA, et al: Initial testing (stage 1) of the mTOR inhibitor rapamycin by the pediatric preclinical testing program. Pediatr Blood Cancer. 50:799–805. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wan X, Mendoza A, Khanna C and Helman LJ: Rapamycin inhibits ezrin-mediated metastatic behavior in a murine model of osteosarcoma. Cancer Res. 65:2406–2411. 2005. View Article : Google Scholar : PubMed/NCBI | |
Mu X, Isaac C, Schott T, Huard J and Weiss K: Rapamycin inhibits ALDH activity, resistance to oxidative stress, and metastatic potential in murine osteosarcoma cells. Sarcoma. 2013:4807132013. | |
LeRoith D and Roberts CT Jr: The insulin-like growth factor system and cancer. Cancer Lett. 195:127–137. 2003. View Article : Google Scholar : PubMed/NCBI | |
Chitnis MM, Yuen JS, Protheroe AS, Pollak M and Macaulay VM: The type 1 insulin-like growth factor receptor pathway. Clin Cancer Res. 14:6364–6370. 2008. View Article : Google Scholar : PubMed/NCBI | |
Chou AJ, Merola PR, Sowers R, et al: Analysis of aberrant signal transduction pathways in osteosarcoma cell lines. Proc Amer Assoc Cancer Res. 46:45512005. | |
Scotlandi K, Manara MC, Nicoletti G, et al: Antitumor activity of the insulin-like growth factor-I receptor kinase inhibitor NVP-AEW541 in musculoskeletal tumors. Cancer Res. 65:3868–3876. 2005. View Article : Google Scholar : PubMed/NCBI | |
Tanno B, Mancini C, Vitali R, et al: Down-regulation of insulin-like growth factor I receptor activity by NVP-AEW541 has an antitumor effect on neuroblastoma cells in vitro and in vivo. Clin Cancer Res. 12:6772–6780. 2006. View Article : Google Scholar | |
Hassan SE, Bekarev M, Kim MY, Lin J, Piperdi S, Gorlick R and Geller DS: Cell surface receptor expression patterns in osteosarcoma. Cancer. 118:740–749. 2012. View Article : Google Scholar | |
Luk F, Yu Y, Walsh WR and Yang JL: IGF1R-targeted therapy and its enhancement of doxorubicin chemosensitivity in human osteosarcoma cell lines. Cancer Invest. 29:521–532. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wang YH, Xiong J, Wang SF, Yu Y, Wang B, Chen YX, Shi HF and Qiu Y: Lentivirus-mediated shRNA targeting insulin-like growth factor-1 receptor (IGF-1R) enhances chemosensitivity of osteosarcoma cells in vitro and in vivo. Mol Cell Biochem. 341:225–233. 2010. View Article : Google Scholar | |
Rettew AN, Young ED, Lev DC, Kleinerman ES, Abdul-Karim FW, Getty PJ and Greenfield EM: Multiple receptor tyrosine kinases promote the in vitro phenotype of metastatic human osteosarcoma cell lines. Oncogenesis. 1:e342012. View Article : Google Scholar : PubMed/NCBI | |
Wang YH, Han XD, Qiu Y, et al: Increased expression of insulin-like growth factor-1 receptor is correlated with tumor metastasis and prognosis in patients with osteosarcoma. J Surg Oncol. 105:235–243. 2012. View Article : Google Scholar | |
Gombos A, Metzger-Filho O, Dal Lago L and Awada-Hussein A: Clinical development of insulin-like growth factor receptor-1 (IGF-1R) inhibitors: at the crossroad? Invest New Drugs. 30:2433–2442. 2012. View Article : Google Scholar : PubMed/NCBI | |
Tap WD, Demetri GD, Barnette P, et al: AMG 479 in relapsed or refractory Ewing’s family tumors (EFT) or desmoplastic small round cell tumors (DSRCT): Phase II results. J Clin Oncol. 28(15 Suppl): 100012010. | |
Natinoal Institutes of Health. A Study to Determine the Activity of SCH 717454 in Subjects with Relapsed Osteosarcoma or Ewing’s Sarcoma (Study P04720AM3). http://clinicaltrials.gov/ct2/show/NCT00617890?term=sch-717454&rank=2. Accessed April 6, 2011 | |
Akatsuka T, Wada T, Kokai Y, et al: ErbB2 expression is correlated with increased survival of patients with osteosarcoma. Cancer. 94:1397–1404. 2002. View Article : Google Scholar : PubMed/NCBI | |
Zhou Q, Zhu Y, Deng Z, Long H, Zhang S and Chen X: VEGF and EMMPRIN expression correlates with survival of patients with osteosarcoma. Surg Oncol. 20:13–19. 2011. View Article : Google Scholar : PubMed/NCBI | |
Maris JM, Courtright J, Houghton PJ, et al: Initial testing of the VEGFR inhibitor AZD2171 by the pediatric preclinical testing program. Pediatr Blood Cancer. 50:581–587. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ebb D, Meyers P, Grier H, et al: Phase II trial of trastuzumab in combination with cytotoxic chemotherapy for treatment of metastatic osteosarcoma with human epidermal growth factor receptor 2 overexpression: a report from the children’s oncology group. J Clin Oncol. 30:2545–2551. 2012.PubMed/NCBI | |
Liebermann DA, Hoffman B and Steinman RA: Molecular controls of growth arrest and apoptosis: p53-dependent and independent pathways. Oncogene. 11:199–210. 1995. | |
Asada N, Tsuchiya H and Tomita K: De novo deletions of p53 gene and wild-type p53 correlate with acquired cisplatin-resistance in human osteosarcoma OST cell line. Anticancer Res. 19:5131–5137. 1999.PubMed/NCBI | |
Wong RP, Tsang WP, Chau PY, Co NN, Tsang TY and Kwok TT: p53-R273H gains new function in induction of drug resistance through down-regulation of procaspase-3. Mol Cancer Ther. 6:1054–1061. 2007. View Article : Google Scholar : PubMed/NCBI | |
Fan J and Bertino JR: Modulation of cisplatinum cytotoxicity by p53: effect of p53-mediated apoptosis and DNA repair. Mol Pharmacol. 56:966–972. 1999.PubMed/NCBI | |
Tsuchiya H, Mori Y, Ueda Y, Okada G and Tomita K: Sensitization and caffeine potentiation of cisplatin cytotoxicity resulting from introduction of wild-type p53 gene in human osteosarcoma. Anticancer Res. 20:235–242. 2000.PubMed/NCBI | |
Sato N, Mizumoto K, Maehara N, Kusumoto M, Nishio S, Urashima T, Ogawa T and Tanaka M: Enhancement of drug-induced apoptosis by antisense oligodeoxynucleotides targeted against Mdm2 and p21WAF1/CIP1. Anticancer Res. 20:837–842. 2000.PubMed/NCBI | |
Tang HJ, Qian D, Sondak VK, Stachura S and Lin J: A modified p53 enhances apoptosis in sarcoma cell lines mediated by doxorubicin. Br J Cancer. 90:1285–1292. 2004. View Article : Google Scholar : PubMed/NCBI | |
Goto A, Kanda H, Ishikawa Y, et al: Association of loss of heterozygosity at the p53 locus with chemoresistance in osteosarcomas. Jpn J Cancer Res. 89:539–547. 1998. View Article : Google Scholar : PubMed/NCBI | |
Pápai Z, Féja CN, Hanna EN, Sztán M, Oláh E and Szendrôi M: P53 overexpression as an indicator of overall survival and response to treatment in osteosarcomas. Pathol Oncol Res. 3:15–19. 1997. | |
Ozger H, Eralp L, Atalar AC, et al: The effect of resistance-related proteins on the prognosis and survival of patients with osteosarcoma: an immunohistochemical analysis. Acta Orthop Traumatol Turc. 43:28–34. 2009.(In Turkish). | |
Wunder JS, Gokgoz N, Parkes R, et al: TP53 mutations and outcome in osteosarcoma: a prospective, multicenter study. J Clin Oncol. 23:1483–1490. 2005. View Article : Google Scholar : PubMed/NCBI | |
Chao DT and Korsmeyer SJ: BCL-2 family: regulators of cell death. Ann Rev Immunol. 16:395–419. 1998. View Article : Google Scholar | |
Reed JC: Double identity for proteins of the Bcl-2 family. Nature. 387:773–776. 1997. View Article : Google Scholar : PubMed/NCBI | |
Korsmeyer SJ: BCL-2 gene family and the regulation of programmed cell death. Cancer Res. 59(7 Suppl): 1693s–1700s. 1999.PubMed/NCBI | |
Ye D, Li H, Qian S, Sun Y, Zheng J and Ma Y: bcl-2/bax expression and p53 gene status in human bladder cancer: relationship to early recurrence with intravesical chemotherapy after resection. J Urol. 160:2025–2029. 1998. View Article : Google Scholar | |
Han JY, Chung YJ, Park SW, Kim JS, Rhyu MG, Kim HK and Lee KS: The relationship between cisplatin-induced apoptosis and p53, bcl-2 and bax expression in human lung cancer cells. Korean J Intern Med. 14:42–52. 1999.PubMed/NCBI | |
Luo D, Cheng SC, Xie H and Xie Y: Chemosensitivity of human hepatocellular carcinoma cell line QGY-7703 is related to bcl-2 protein levels. Tumour Biol. 20:331–340. 1999. View Article : Google Scholar : PubMed/NCBI | |
Murata T, Haisa M, Uetsuka H, et al: Molecular mechanism of chemoresistance to cisplatin in ovarian cancer cell lines. Int J Mol Med. 13:865–868. 2004.PubMed/NCBI | |
Perego P, Righetti SC, Supino R, et al: Role of apoptosis and apoptosis-related proteins in the cisplatin-resistant phenotype of human tumor cell lines. Apoptosis. 2:540–548. 1997. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Zhang CL, Zeng BF, Wu XS, Gao TT and Oda Y: Enhanced chemosensitivity of drug-resistant osteosarcoma cells by lentivirus-mediated Bcl-2 silencing. Biochem Biophys Res Commun. 390:642–647. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zhang C, Zhao Y and Zeng B: Enhanced chemosensitivity by simultaneously inhibiting cell cycle progression and promoting apoptosis of drug-resistant osteosarcoma MG63/DXR cells by targeting Cyclin D1 and Bcl-2. Cancer Biomark. 12:155–167. 2012. | |
Dey R and Moraes CT: Lack of oxidative phosphorylation and low mitochondrial membrane potential decrease susceptibility to apoptosis and do not modulate the protective effect of Bcl-x(L) in osteosarcoma cells. J Biol Chem. 275:7087–7094. 2000. View Article : Google Scholar | |
Zangemeister-Wittke U: Antisense to apoptosis inhibitors facilitates chemotherapy and TRAIL-induced death signaling. Ann NY Acad Sci. 1002:90–94. 2003. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Yu J, Park BH, et al: Role of BAX in the apoptotic response to anticancer agents. Science. 290:989–992. 2000. View Article : Google Scholar : PubMed/NCBI | |
Eliseev RA, Dong YF, Sampson E, et al: Runx2-mediated activation of the Bax gene increases osteosarcoma cell sensitivity to apoptosis. Oncogene. 27:3605–3614. 2008. View Article : Google Scholar : PubMed/NCBI | |
Cao X, Bennett RL and May WS: c-Myc and caspase-2 are involved in activating Bax during cytotoxic drug-induced apoptosis. J Biol Chem. 283:14490–14496. 2008. View Article : Google Scholar | |
Ferrari S, Bertoni F, Zanella L, et al: Evaluation of P-glycoprotein, HER-2/ErbB-2, p53, and Bcl-2 in primary tumor and metachronous lung metastases in patients with high-grade osteosarcoma. Cancer. 100:1936–1942. 2004. View Article : Google Scholar : PubMed/NCBI | |
Wu X, Cai ZD, Lou LM and Zhu YB: Expressions of p53, c-MYC, BCL-2 and apoptotic index in human osteosarcoma and their correlations with prognosis of patients. Cancer Epidemiol. 36:212–216. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wang ZX, Yang JS, Pan X, Wang JR, Li J, Yin YM and De W: Functional and biological analysis of Bcl-xL expression in human osteosarcoma. Bone. 47:445–454. 2010. View Article : Google Scholar | |
Nedelcu T, Kubista B, Koller A, et al: Livin and Bcl-2 expression in high-grade osteosarcoma. J Cancer Res Clin Oncol. 134:237–244. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kaseta MK, Khaldi L, Gomatos IP, et al: Prognostic value of bax, bcl-2, and p53 staining in primary osteosarcoma. J Surg Oncol. 97:259–266. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kaseta MK, Gomatos IP, Khaldi L, et al: Prognostic value of bax, cytochrome C, and caspase-8 protein expression in primary osteosarcoma. Hybridoma (Larchmt). 26:355–362. 2007. View Article : Google Scholar : PubMed/NCBI | |
Degenhardt K, Mathew R, Beaudoin B, et al: Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell. 10:51–64. 2006. View Article : Google Scholar : PubMed/NCBI | |
Klionsky DJ and Emr SD: Autophagy as a regulated pathway of cellular degradation. Science. 290:1717–1721. 2000. View Article : Google Scholar | |
Maiuri MC, Zalckvar E, Kimchi A and Kroemer G: Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol. 8:741–752. 2007. View Article : Google Scholar : PubMed/NCBI | |
Kroemer G and Levine B: Autophagic cell death: the story of a misnomer. Nat Rev Mol Cell Biol. 9:1004–1010. 2008. View Article : Google Scholar | |
Han J, Hou W, Goldstein LA, et al: Involvement of protective autophagy in TRAIL resistance of apoptosis-defective tumor cells. J Biol Chem. 283:19665–19677. 2008. View Article : Google Scholar : PubMed/NCBI | |
Amaravadi RK, Yu D, Lum JJ, et al: Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. J Clin Invest. 117:326–336. 2007. View Article : Google Scholar : PubMed/NCBI | |
Carew JS, Medina EC, Esquivel JA II, et al: Autophagy inhibition enhances vorinostat-induced apoptosis via ubiquitinated protein accumulation. J Cell Mol Med. 14:2448–2459. 2010. View Article : Google Scholar | |
Wu Z, Chang PC, Yang JC, et al: Autophagy blockade sensitizes prostate cancer cells towards Src family kinase inhibitors. Genes Cancer. 1:40–49. 2010. View Article : Google Scholar : PubMed/NCBI | |
Li J, Hou N, Faried A, Tsutsumi S and Kuwano H: Inhibition of autophagy augments 5-fluorouracil chemotherapy in human colon cancer in vitro and in vivo model. Eur J Cancer. 46:1900–1909. 2010. View Article : Google Scholar : PubMed/NCBI | |
White E and DiPaola RS: The double-edged sword of autophagy modulation in cancer. Clin Cancer Res. 15:5308–5316. 2009. View Article : Google Scholar | |
Katayama M, Kawaguchi T, Berger MS and Pieper RO: DNA damaging agent-induced autophagy produces a cytoprotective adenosine triphosphate surge in malignant glioma cells. Cell Death Differ. 14:548–558. 2007. View Article : Google Scholar | |
Carew JS, Nawrocki ST, Kahue CN, et al: Targeting autophagy augments the anticancer activity of the histone deacetylase inhibitor SAHA to overcome Bcr-Abl-mediated drug resistance. Blood. 110:313–322. 2007. View Article : Google Scholar : PubMed/NCBI | |
Lambert LA, Qiao N, Hunt KK, Lambert DH, Mills GB, Meijer L and Keyomarsi K: Autophagy: a novel mechanism of synergistic cytotoxicity between doxorubicin and roscovitine in a sarcoma model. Cancer Res. 68:7966–7974. 2008. View Article : Google Scholar : PubMed/NCBI | |
Meschini S, Condello M, Calcabrini A, et al: The plant alkaloid voacamine induces apoptosis-independent autophagic cell death on both sensitive and multidrug resistant human osteosarcoma cells. Autophagy. 4:1020–1033. 2008. View Article : Google Scholar | |
Kim HJ, Lee SG, Kim YJ, Park JE, Lee KY, Yoo YH and Kim JM: Cytoprotective role of autophagy during paclitaxel-induced apoptosis in Saos-2 osteosarcoma cells. Int J Oncol. 42:1985–1992. 2013.PubMed/NCBI | |
Zhang Z, Shao Z, Xiong L, Che B, Deng C and Xu W: Expression of Beclin1 in osteosarcoma and the effects of down-regulation of autophagy on the chemotherapeutic sensitivity. J Huazhong Univ Sci Technolog Med Sci. 29:737–740. 2009. View Article : Google Scholar : PubMed/NCBI | |
Coupienne I, Fettweis G and Piette J: RIP3 expression induces a death profile change in U2OS osteosarcoma cells after 5-ALA-PDT. Lasers Surg Med. 43:557–564. 2011. | |
Huang J, Ni J, Liu K, et al: HMGB1 promotes drug resistance in osteosarcoma. Cancer Res. 72:230–238. 2012. View Article : Google Scholar : PubMed/NCBI | |
Huang J, Liu K, Yu Y, et al: Targeting HMGB1-mediated autophagy as a novel therapeutic strategy for osteosarcoma. Autophagy. 8:275–277. 2012. View Article : Google Scholar : PubMed/NCBI | |
Pillai RS, Bhattacharyya SN and Fillipowicz W: Repression of protein synthesis by miRNAs: how many mechanisms? Trends Cell Biol. 17:118–126. 2007. View Article : Google Scholar | |
Lu J, Getz G, Miska EA, et al: MicroRNA expression profiles classify human cancers. Nature. 435:834–838. 2005. View Article : Google Scholar | |
Volinia S, Calin GA, Liu CG, et al: A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA. 103:2257–2261. 2006. View Article : Google Scholar : PubMed/NCBI | |
Nakatani F, Ferracin M, Manara MC, et al: miR-34a predicts survival of Ewing’s sarcoma patients and directly influences cell chemo-sensitivity and malignancy. J Pathol. 226:796–805. 2012.PubMed/NCBI | |
Gougelet A, Pissaloux D, Besse A, et al: Micro-RNA profiles in osteosarcoma as a predictive tool for ifosfamide response. Int J Cancer. 129:680–690. 2011. View Article : Google Scholar : PubMed/NCBI | |
Song B, Wang Y, Xi Y, et al: Mechanism of chemoresistance mediated by miR-140 in human osteosarcoma and colon cancer cells. Oncogene. 28:4065–4074. 2009. View Article : Google Scholar : PubMed/NCBI | |
Song B, Wang Y, Titmus MA, Botchkina G, Formentini A, Kornmann M and Ju J: Molecular mechanism of chemoresistance by miR-215 in osteosarcoma and colon cancer cells. Mol Cancer. 9:962010. View Article : Google Scholar : PubMed/NCBI | |
Cai CK, Zhao GY, Tian LY, et al: miR-15a and miR-16-1 downregulate CCND1 and induce apoptosis and cell cycle arrest in osteosarcoma. Oncol Rep. 28:1764–1770. 2012.PubMed/NCBI | |
Makino S: The role of tumor stem-cells in regrowth of the tumor following drastic applications. Acta Unio Int Contra Cancrum. 15(Suppl 1): 196–198. 1959.PubMed/NCBI | |
Bonnet D and Dick JE: Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 3:730–737. 1997. View Article : Google Scholar : PubMed/NCBI | |
Ignatova TN, Kukekov VG, Laywell ED, Suslov ON, Vrionis FD and Steindler DA: Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia. 39:193–206. 2002. View Article : Google Scholar | |
Singh SK, Clarke ID, Terasaki M, et al: Identification of a cancer stem cell in human brain tumors. Cancer Res. 63:5821–5828. 2003.PubMed/NCBI | |
Liu B, Ma W, Jha RK and Gurung K: Cancer stem cells in osteosarcoma: recent progress and perspective. Acta Oncol. 50:1142–1150. 2011. View Article : Google Scholar : PubMed/NCBI | |
Woodward WA and Sulman EP: Cancer stem cells: markers or biomarkers? Cancer Metastasis Rev. 27:459–470. 2008. View Article : Google Scholar : PubMed/NCBI | |
Vangipuram SD, Wang ZJ and Lyman WD: Resistance of stem-like cells from neuroblastoma cell lines to commonly used chemotherapeutic agents. Pediatr Blood Cancer. 54:361–368. 2010. View Article : Google Scholar | |
Di Fiore R, Santulli A, Ferrante RD, et al: Identification and expansion of human osteosarcoma-cancer-stem cells by long-term 3-aminobenzamide treatment. J Cell Physiol. 219:301–313. 2009.PubMed/NCBI | |
Fujii H, Honoki K, Tsujiuchi T, Kido A, Yoshitani K and Takakura Y: Sphere-forming stem-like cell populations with drug resistance in human sarcoma cell lines. Int J Oncol. 34:1381–1386. 2009.PubMed/NCBI | |
Honoki K, Fujii H, Kubo A, Kido A, Mori T, Tanaka Y and Tsujiuchi T: Possible involvement of stem-like populations with elevated ALDH1 in sarcomas for chemotherapeutic drug resistance. Oncol Rep. 24:501–505. 2010. View Article : Google Scholar | |
Martins-Neves SR, Lopes ÁO, do Carmo A, et al: Therapeutic implications of an enriched cancer stem-like cell population in a human osteosarcoma cell line. BMC Cancer. 12:1392012. View Article : Google Scholar : PubMed/NCBI | |
Chou AJ, Merola PR, Wexler LH, et al: Treatment of osteosarcoma at first recurrence after contemporary therapy: the Memorial Sloan-Kettering Cancer Center experience. Cancer. 104:2214–2221. 2005. View Article : Google Scholar | |
Alberts DS, Muggia FM, Carmichael J, et al: Efficacy and safety of liposomal anthracyclines in phase I/II clinical trials. Semin Oncol. 31(Suppl 13): S53–S90. 2004. View Article : Google Scholar : PubMed/NCBI | |
Maes H, Rubio N, Garg AD and Agostinis P: Autophagy: shaping the tumor microenvironment and therapeutic response. Trends Mol Med. 19:428–446. 2013. View Article : Google Scholar : PubMed/NCBI |