1
|
Jónsson ZO and Hübscher U: Proliferating
cell nuclear antigen: more than a clamp for DNA polymerases.
Bioessays. 19:967–975. 1997.PubMed/NCBI
|
2
|
Kelman Z and O’Donnell M: Structural and
functional similarities of prokaryotic and eukaryotic DNA
polymerase sliding clamps. Nucleic Acids Res. 23:3613–3620. 1995.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Wyman C and Botchan M: DNA replication. A
familiar ring to DNA polymerase processivity. Curr Biol. 5:334–337.
1995. View Article : Google Scholar : PubMed/NCBI
|
4
|
Krishna TS, Kong XP, Gary S, et al:
Crystal structure of the eukaryotic DNA polymerase processivity
factor PCNA. Cell. 79:1233–1243. 1994. View Article : Google Scholar : PubMed/NCBI
|
5
|
Warbrick E, Lane DP, Glover DM and Cox LS:
Homologous regions of Fen1 and p21Cip1 compete for binding to the
same site on PCNA: a potential mechanism to co-ordinate DNA
replication and repair. Oncogene. 14:2313–2321. 1997. View Article : Google Scholar : PubMed/NCBI
|
6
|
Tsurimoto T: PCNA binding proteins. Front
Biosci. 4:D849–D858. 1999. View Article : Google Scholar
|
7
|
Dieckman LM, Freudenthal BD and Washington
MT: PCNA structure and function: insights from structures of PCNA
complexes and post-translationally modified PCNA. Subcell Biochem.
62:281–299. 2012. View Article : Google Scholar : PubMed/NCBI
|
8
|
Maga G and Hubscher U: Proliferating cell
nuclear antigen (PCNA): a dancer with many partners. J Cell Sci.
116:3051–3060. 2003. View Article : Google Scholar : PubMed/NCBI
|
9
|
Watanabe K, Tateishi S, Kawasuji M, et al:
RAD18 guides poleta to replication stalling sites through physical
interaction and PCNA monoubiquitination. EMBO J. 23:3886–3896.
2004. View Article : Google Scholar : PubMed/NCBI
|
10
|
Bi X, Barkley LR, Slater DM, et al: RAD18
regulates DNA polymerase kappa and is required for recovery from
S-phase checkpoint-mediated arrest. Mol Cell Biol. 26:3527–3540.
2006. View Article : Google Scholar : PubMed/NCBI
|
11
|
Johnson RE, Haracska L, Prakash S and
Prakash L: Role of DNA polymerase zeta in the bypass of a (6-4) TT
photoproduct. Mol Cell Biol. 21:3558–3563. 2001. View Article : Google Scholar
|
12
|
Hershko A and Ciechanover A: The ubiquitin
system. Annu Rev Biochem. 67:425–479. 1998. View Article : Google Scholar
|
13
|
Yeh ET, Gong L and Kamitani T:
Ubiquitin-like proteins: new wines in new bottles. Gene. 248:1–14.
2000. View Article : Google Scholar : PubMed/NCBI
|
14
|
Pickart CM: Back to the future with
ubiquitin. Cell. 116:181–190. 2004. View Article : Google Scholar : PubMed/NCBI
|
15
|
Tsui C, Raguraj A and Pickart CM:
Ubiquitin binding site of the ubiquitin E2 variant (UEV) protein
Mms2 is required for DNA damage tolerance in the yeast RAD6
pathway. J Biol Chem. 280:19829–19835. 2005. View Article : Google Scholar : PubMed/NCBI
|
16
|
Ulrich HD: Regulating post-translational
modifications of the eukaryotic replication clamp PCNA. DNA Repair
(Amst). 8:461–469. 2009. View Article : Google Scholar : PubMed/NCBI
|
17
|
Chiu RK, Brun J, Ramaekers C, et al:
Lysine 63-polyubiquitination guards against translesion
synthesis-induced mutations. PLoS Genet. 2:e1162006. View Article : Google Scholar : PubMed/NCBI
|
18
|
Andersen PL, Xu F and Xiao W: Eukaryotic
DNA damage tolerance and translesion synthesis through covalent
modifications of PCNA. Cell Res. 18:162–173. 2008. View Article : Google Scholar : PubMed/NCBI
|
19
|
Prakash L: Characterization of
postreplication repair in Saccharomyces cerevisiae and
effects of RAD6, RAD18, rev3 and RAD52 mutations. Mol Gen Genet.
184:471–478. 1981.
|
20
|
Lawrence CW and Christensen R: UV
mutagenesis in radiation-sensitive strains of yeast. Genetics.
82:207–232. 1976.PubMed/NCBI
|
21
|
Bailly V, Lamb J, Sung P, et al: Specific
complex formation between yeast RAD6 and RAD18 proteins: a
potential mechanism for targeting RAD6 ubiquitin-conjugating
activity to DNA damage sites. Genes Dev. 8:811–820. 1994.
View Article : Google Scholar
|
22
|
Brun J, Chiu R, Lockhart K, et al: hMMS2
serves a redundant role in human PCNA polyubiquitination. BMC Mol
Biol. 9:242008. View Article : Google Scholar : PubMed/NCBI
|
23
|
Pfander B, Moldovan GL, Sacher M, et al:
SUMO-modified PCNA recruits Srs2 to prevent recombination during S
phase. Nature. 436:428–433. 2005.PubMed/NCBI
|
24
|
Haracska L, Torres-Ramos CA, Johnson RE,
et al: Opposing effects of ubiquitin conjugation and SUMO
modification of PCNA on replicational bypass of DNA lesions in
Saccharomyces cerevisiae. Mol Cell Biol. 24:4267–4274. 2004.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Johnson ES: Protein modification by SUMO.
Annu Rev Biochem. 73:355–382. 2004. View Article : Google Scholar
|
26
|
Melchior F: SUMO - nonclassical ubiquitin.
Annu Rev Cell Dev Biol. 16:591–626. 2000. View Article : Google Scholar
|
27
|
Su HL and Li SS: Molecular features of
human ubiquitin-like SUMO genes and their encoded proteins. Gene.
296:65–73. 2002. View Article : Google Scholar : PubMed/NCBI
|
28
|
Matunis MJ: On the road to repair: PCNA
encounters SUMO and ubiquitin modifications. Mol Cell. 10:441–442.
2002. View Article : Google Scholar
|
29
|
Johnson ES and Blobel G: Cell
cycle-regulated attachment of the ubiquitin-related protein SUMO to
the yeast septins. J Cell Biol. 147:981–994. 1999. View Article : Google Scholar
|
30
|
Ladner JE, Pan M, Hurwitz J and Kelman Z:
Crystal structures of two active proliferating cell nuclear
antigens (PCNAs) encoded by Thermococcus kodakaraensis. Proc
Natl Acad Sci USA. 108:2711–2716. 2011. View Article : Google Scholar : PubMed/NCBI
|
31
|
Amin NS and Holm C: In vivo analysis
reveals that the interdomain region of the yeast proliferating cell
nuclear antigen is important for DNA replication and DNA repair.
Genetics. 144:479–493. 1996.
|
32
|
Eissenberg JC, Ayyagari R, Gomes XV and
Burgers PM: Mutations in yeast proliferating cell nuclear antigen
define distinct sites for interaction with DNA polymerase delta and
DNA polymerase epsilon. Mol Cell Biol. 17:6367–6378. 1997.
|
33
|
Gali H, Juhasz S, Morocz M, et al: Role of
SUMO modification of human PCNA at stalled replication fork.
Nucleic Acids Res. 40:6049–6059. 2012. View Article : Google Scholar : PubMed/NCBI
|
34
|
Müller S, Hoege C, Pyrowolakis G and
Jentsch S: SUMO, ubiquitin’s mysterious cousin. Nat Rev Mol Cell
Biol. 2:202–210. 2001.
|
35
|
Ulrich HD, Vogel S and Davies AA: SUMO
keeps a check on recombination during DNA replication. Cell Cycle.
4:1699–1702. 2005. View Article : Google Scholar : PubMed/NCBI
|
36
|
Bergink S and Jentsch S: Principles of
ubiquitin and SUMO modifications in DNA repair. Nature.
458:461–467. 2009. View Article : Google Scholar : PubMed/NCBI
|
37
|
Branzei D and Foiani M: The DNA damage
response during DNA replication. Curr Opin Cell Biol. 17:568–575.
2005. View Article : Google Scholar : PubMed/NCBI
|
38
|
Kerscher O: SUMO junction - what’s your
function? New insights through SUMO-interacting motifs. EMBO J.
8:550–555. 2007.
|
39
|
Branzei D and Foiani M: RecQ helicases
queuing with Srs2 to disrupt RAD51 filaments and suppress
recombination. Genes Dev. 21:3019–3026. 2007. View Article : Google Scholar : PubMed/NCBI
|
40
|
Santiago A, Godsey AC, Hossain J, et al:
Identification of two independent SUMO-interacting motifs in Daxx:
evolutionary conservation from Drosophila to humans and their
biochemical functions. Cell Cycle. 8:76–87. 2009. View Article : Google Scholar
|
41
|
Ting L, Jun H and Junjie C: RAD18 lives a
double life: Its implication in DNA double-strand break repair. DNA
Repair (Amst). 9:1241–1248. 2010. View Article : Google Scholar : PubMed/NCBI
|
42
|
Lehmann AR, Niimi A, Ogi T, et al:
Translesion synthesis: Y-family polymerases and the polymerase
switch. DNA Repair (Amst). 6:891–899. 2007. View Article : Google Scholar : PubMed/NCBI
|
43
|
Pâques F and Habe JE: Multiple pathways of
recombination induced by double-strand breaks in Saccharomyces
cerevisiae. Microbiol Mol Biol Rev. 63:349–404. 1999.PubMed/NCBI
|
44
|
Goldfless SJ, Morag AS, Belisle KA, et al:
DNA repeat rearrangements mediated by DnaK-dependent replication
fork repair. Mol Cell. 21:595–604. 2006. View Article : Google Scholar : PubMed/NCBI
|
45
|
Hishida T, Ohya T, Kubota Y, et al:
Functional and physical interaction of yeast Mgs1 with PCNA: impact
on RAD6-dependent DNA damage tolerance. Mol Cell Biol.
26:5509–5517. 2006. View Article : Google Scholar : PubMed/NCBI
|
46
|
Lehmann AR: Translesion synthesis in
mammalian cells. Exp Cell Res. 312:2673–2676. 2006. View Article : Google Scholar : PubMed/NCBI
|
47
|
Zhang H and Lawrence CW: The error-free
component of the RAD6/RAD18 DNA damage tolerance pathway of budding
yeast employs sister-strand recombination. Proc Natl Acad Sci USA.
102:15954–15959. 2005. View Article : Google Scholar : PubMed/NCBI
|
48
|
Washington MT, Johnson RE, Prakash S, et
al: Accuracy of thymine-thymine dimer bypass by Saccharomyces
cerevisiae DNA polymerase eta. Proc Natl Acad Sci USA.
97:3094–3099. 2000.PubMed/NCBI
|
49
|
Johnson RE, Prakash S and Prakash L:
Efficient bypass of a thymine-thymine dimer by yeast DNA
polymerase, Poleta. Science. 283:1001–1004. 1999. View Article : Google Scholar : PubMed/NCBI
|
50
|
Kannouche PL, Wing J and Lehmann AR:
Interaction of human DNA polymerase eta with monoubiquitinated
PCNA: A possible mechanism for the polymerase switch in response to
DNA damage. Mol Cell. 14:491–500. 2004. View Article : Google Scholar : PubMed/NCBI
|
51
|
Freudenthal BD, Gakhar L, Ramaswamy S and
Washington MT: Structure of monoubiquitinated PCNA and implications
for translesion synthesis and DNA polymerase exchange. Nat Struct
Mol Biol. 17:479–484. 2010. View Article : Google Scholar : PubMed/NCBI
|
52
|
Broomfield S, Chow BL and Xiao W: MMS2,
encoding a ubiquitin-conjugating-enzyme-like protein, is a member
of the yeast error-free postreplication repair pathway. Proc Natl
Acad Sci USA. 95:5678–5683. 2010. View Article : Google Scholar
|
53
|
Michel B, Ehrlich SD and Uzest M: DNA
double-strand breaks caused by replication arrest. EMBO J.
16:430–438. 1997. View Article : Google Scholar : PubMed/NCBI
|
54
|
Ward JF: DNA damage produced by ionizing
RADiation in mammalian cells: identities, mechanisms of formation,
and reparability. Prog Nucleic Acid Res Mol Biol. 35:95–125. 1988.
View Article : Google Scholar : PubMed/NCBI
|
55
|
Weinstock DM, Richardson CA, Elliott B and
Jastin M: Modeling oncogenic translocations: distinct roles for
double-strand break repair pathways in translocation formation in
mammalian cells. DNA Repair (Amst). 5:1065–1074. 2006. View Article : Google Scholar
|
56
|
Hoege C, Pfander B, Moldovan GL, et al:
RAD6-dependent DNA repair is linked to modification of PCNA by
ubiquitin and SUMO. Nature. 419:135–141. 2002. View Article : Google Scholar
|
57
|
Stelter P and Ulrich HD: Control of
spontaneous and damage-induced mutagenesis by SUMO and ubiquitin
conjugation. Nature. 425:188–191. 2003. View Article : Google Scholar : PubMed/NCBI
|
58
|
Davies AA, Huttner D, Daigaku Y, et al:
Activation of ubiquitin-dependent DNA damage bypass is mediated by
replication protein a. Mol Cell. 29:625–636. 2008. View Article : Google Scholar : PubMed/NCBI
|
59
|
Yang XH and Zou L: Dual functions of DNA
replication forks in checkpoint signaling and PCNA ubiquitination.
Cell Cycle. 8:191–194. 2009. View Article : Google Scholar : PubMed/NCBI
|
60
|
Huttner D and Ulrich HD: Cooperation of
replication protein A with the ubiquitin ligase RAD18 in DNA damage
bypass. Cell Cycle. 7:3629–3633. 2008. View Article : Google Scholar : PubMed/NCBI
|
61
|
Chen S, Davies AA, Sagan D and Ulrich HD:
The RING finger ATPase RAD5p of Saccharomyces cerevisiae
contributes to DNA double-strand break repair in a
ubiquitin-independent manner. Nucleic Acids Res. 33:5878–5886.
2005.PubMed/NCBI
|
62
|
Frampton J, Irmisch A, Green CM, et al:
Postreplication repair and PCNA modification in Schizosaccharomyces
pombe. Mol Biol Cell. 17:2976–2985. 2006. View Article : Google Scholar : PubMed/NCBI
|
63
|
Daigaku Y, Davies AA and Ulrich HD:
Ubiquitin-dependent DNA damage bypass is separable from genome
replication. Nature. 465:951–955. 2010. View Article : Google Scholar : PubMed/NCBI
|
64
|
Hirano Y, Reddy J and Sugimoto K: Role of
budding yeast RAD18 in repair of HO-induced double-strand breaks.
DNA Repair (Amst). 8:51–59. 2009. View Article : Google Scholar : PubMed/NCBI
|
65
|
Podust VN and Hübscher U: Lagging strand
DNA synthesis by calf thymus DNA polymerases alpha, beta, delta and
epsilon in the presence of auxiliary proteins. Nucleic Acids Res.
21:841–846. 1993. View Article : Google Scholar : PubMed/NCBI
|
66
|
Garg P and Burgers PM: Ubiquitinated
proliferating cell nuclear antigen activates translesion DNA
polymerases eta and REV1. Proc Natl Acad Sci USA. 102:18361–18366.
2005. View Article : Google Scholar : PubMed/NCBI
|
67
|
Kastan MB and Bartek J: Cell-cycle
checkpoints and cancer. Nature. 432:316–323. 2004. View Article : Google Scholar : PubMed/NCBI
|
68
|
Branzei D, Vanoli F and Foiani M:
Sumoylation regulates RAD18-mediated template switch. Nature.
456:915–920. 2008. View Article : Google Scholar : PubMed/NCBI
|
69
|
Nyberg KA, Michelson RJ, Putnam CW and
Weinert TA: Toward maintaining the genome: DNA damage and
replication checkpoints. Annu Rev Genet. 36:617–656. 2002.
View Article : Google Scholar : PubMed/NCBI
|
70
|
McHugh PJ and Sarkar S: DNA interstrand
cross-link repair in the cell cycle: a critical role for polymerase
zeta in G1 phase. Cell Cycle. 5:1044–1047. 2006. View Article : Google Scholar : PubMed/NCBI
|
71
|
Moldovan GL, Pfander B and Jentsch S: PCNA
controls establishment of sister chromatid cohesion during S phase.
Mol Cell. 23:723–732. 2006. View Article : Google Scholar : PubMed/NCBI
|
72
|
Bi X, Barkley LR, Slater DM, et al: RAD18
regulates DNA polymerase kappa and is required for recovery from
S-phase checkpoint-mediated arrest. Mol Cell Biol. 26:3527–3540.
2006. View Article : Google Scholar : PubMed/NCBI
|
73
|
Branzei D, Sollier J, Liberi G, et al:
Ubc9- and mms21-mediated sumoylation counteracts recombinogenic
events at damaged replication forks. Cell. 127:509–522. 2006.
View Article : Google Scholar
|
74
|
Niu H, Chung WH, Zhu Z, et al: Mechanism
of the ATP-dependent DNA end-resection machinery from
Saccharomyces cerevisiae. Nature. 467:108–111. 2010.
View Article : Google Scholar : PubMed/NCBI
|
75
|
Krejci L, Van Komen S, Li Y, et al: DNA
helicase Srs2 disrupts the RAD51 presynaptic filament. Nature.
423:305–309. 2003. View Article : Google Scholar : PubMed/NCBI
|
76
|
Chen J, Bozza W and Zhuang Z:
Ubiquitination of PCNA and its essential role in eukaryotic
translesion synthesis. Cell Biochem Biophys. 60:47–60. 2011.
View Article : Google Scholar : PubMed/NCBI
|
77
|
Haracska L, Kondratick CM, Unk I, et al:
Interaction with PCNA is essential for yeast DNA polymerase eta
function. Mol Cell. 8:407–415. 2001. View Article : Google Scholar : PubMed/NCBI
|
78
|
Lee KY and Myung K: PCNA modifications for
regulation of post-replication repair pathways. Mol Cells. 26:5–11.
2008.PubMed/NCBI
|
79
|
Papouli E, Chen S, Davies AA, et al:
Crosstalk between SUMO and ubiquitin on PCNA is mediated by
recruitment of the helicase Srs2p. Mol Cell. 19:123–133. 2005.
View Article : Google Scholar
|
80
|
Schwartz DC and Hochstrasser M: A
superfamily of protein tags: ubiquitin, SUMO and related modifiers.
Trends Biochem Sci. 28:321–328. 2003. View Article : Google Scholar : PubMed/NCBI
|
81
|
Chiu RK, Brun J, Ramaekers C, et al:
Lysine 63-polyubiquitination guards against translesion
synthesis-induced mutations. PLoS Genet. 2:e1162006. View Article : Google Scholar : PubMed/NCBI
|