1
|
Kraemer D, Wozniak RW, Blobel G and Radu
A: The human CAN protein, a putative oncogene product associated
with myeloid leukemogenesis, is a nuclear pore complex protein that
faces the cytoplasm. Proc Natl Acad Sci USA. 91:1519–1523.
1994.
|
2
|
Fan Z, Beresford PJ, Oh DY, Zhang D and
Lieberman J: Tumor suppressor NM23-H1 is a granzyme A-activated
DNase during CTL-mediated apoptosis, and the nucleosome assembly
protein SET is its inhibitor. Cell. 112:659–672. 2003.
|
3
|
Quentmeier H, Schneider B, Röhrs S, et al:
SET-NUP214 fusion in acute myeloid leukemia- and T-cell acute
lymphoblastic leukemia-derived cell lines. J Hematol Oncol.
2:32009.
|
4
|
Gorello P, La Starza R, Varasano E, et al:
Combined interphase fluorescence in situ hybridization
elucidates the genetic heterogeneity of T-cell acute lymphoblastic
leukemia in adults. Haematologica. 95:79–86. 2010.
|
5
|
Chae H, Lim J, Kim M, et al: Phenotypic
and genetic characterization of adult T-cell acute lymphoblastic
leukemia with del(9)(q34);SET-NUP214 rearrangement. Ann Hematol.
91:193–201. 2012.
|
6
|
Van Vlierberghe P, van Grotel M, Tchinda
J, et al: The recurrent SET-NUP214 fusion as a new HOXA activation
mechanism in pediatric T-cell acute lymphoblastic leukemia. Blood.
111:4668–4680. 2008.
|
7
|
Rosati R, La Starza R, Barba G, et al:
Cryptic chromosome 9q34 deletion generates TAF-Ialpha/CAN and
TAF-Ibeta/CAN fusion transcripts in acute myeloid leukemia.
Haematologica. 92:232–235. 2007.
|
8
|
von Lindern M, Breems D, van Baal S,
Adriaansen H and Grosveld G: Characterization of the translocation
breakpoint sequences of two DEK-CAN fusion genes present in t(6;9)
acute myeloid leukemia and a SET-CAN fusion gene found in a case of
acute undifferentiated leukemia. Genes Chromosomes Cancer.
5:227–234. 1992.
|
9
|
Okada Y, Jiang Q, Lemieux M, Jeannotte L,
Su L and Zhang Y: Leukaemic transformation by CALM-AF10 involves
upregulation of Hoxa5 by hDOT1L. Nat Cell Biol. 8:1017–1024.
2006.
|
10
|
Speleman F, Cauwelier B, Dastugue N, et
al: A new recurrent inversion, inv(7)(p15q34), leads to
transcriptional activation of HOXA10 and HOXA11 in a subset of
T-cell acute lymphoblastic leukemias. Leukemia. 19:358–366.
2005.
|
11
|
Ferrando AA, Armstrong SA, Neuberg DS, et
al: Gene expression signatures in MLL-rearranged T-lineage and
B-precursor acute leukemias: dominance of HOX dysregulation. Blood.
102:262–268. 2003.
|
12
|
Kandilci A, Mientjes E and Grosveld G:
Effects of SET and SET-CAN on the differentiation of the human
promonocytic cell line U937. Leukemia. 18:337–340. 2004.
|
13
|
Saito S, Nouno K, Shimizu R, Yamamoto M
and Nagata K: Impairment of erythroid and megakaryocytic
differentiation by a leukemia-associated and t(9;9)-derived fusion
gene product, SET/TAF-Ibeta-CAN/Nup214. J Cell Physiol.
214:322–333. 2008.
|
14
|
De Keersmaecker K, Marynen P and Cools J:
Genetic insights in the pathogenesis of T-cell acute lymphoblastic
leukemia. Haematologica. 90:1116–1127. 2005.
|
15
|
Liu F, Gao L, Jing Y, et al: Detection and
clinical significance of gene rearrangements in Chinese patients
with adult acute lymphoblastic leukemia. Leuk Lymphoma.
54:1521–1526. 2013.
|
16
|
Wang Q, Qiu H, Jiang H, et al: Mutations
of PHF6 are associated with mutations of NOTCH1, JAK1 and
rearrangement of SET-NUP214 in T-cell acute lymphoblastic leukemia.
Haematologica. 96:1808–1814. 2011.
|
17
|
Weng AP, Ferrando AA, Lee W, et al:
Activating mutations of NOTCH1 in human T cell acute lymphoblastic
leukemia. Science. 306:269–271. 2004.
|
18
|
Li WJ, Cui L, Gao C, et al: MRD analysis
and treatment outcome in three children with SET-NUP214-positive
hematological malignancies. Int J Lab Hematol. 33:e25–e27.
2011.
|
19
|
de Klein A, van Kessel AG, Grosveld G, et
al: A cellular oncogene is translocated to the Philadelphia
chromosome in chronic myelocytic leukaemia. Nature. 300:765–767.
1982.
|
20
|
De Braekeleer E, Douet-Guilbert N, Rowe D,
et al: ABL1 fusion genes in hematological malignancies: a review.
Eur J Haematol. 86:361–371. 2011.
|
21
|
De Keersmaecker K, Rocnik JL, Bernad R, et
al: Kinase activation and transformation by NUP214-ABL1 is
dependent on the context of the nuclear pore. Mol Cell. 31:134–142.
2008.
|
22
|
Maurer BJ, Lai E, Hamkalo BA, Hood L and
Attardi G: Novel submicroscopic extrachromosomal elements
containing amplified genes in human cells. Nature. 327:434–437.
1987.
|
23
|
Carroll SM, DeRose ML, Gaudray P, et al:
Double minute chromosomes can be produced from precursors derived
from a chromosomal deletion. Mol Cell Biol. 8:1525–1533. 1988.
|
24
|
Graux C, Stevens-Kroef M, Lafage M, et al:
Groupe Francophone de Cytogénétique Hématologique; Belgian
Cytogenetic Group for Hematology and Oncology: Heterogeneous
patterns of amplification of the NUP214-ABL1 fusion gene in T-cell
acute lymphoblastic leukemia. Leukemia. 23:125–133. 2009.
|
25
|
Eyre T, Schwab CJ, Kinstrie R, et al:
Episomal amplification of NUP214-ABL1 fusion gene in B-cell acute
lymphoblastic leukemia. Blood. 120:4441–4443. 2012.
|
26
|
Roberts KG, Morin RD, Zhang J, et al:
Genetic alterations activating kinase and cytokine receptor
signaling in high-risk acute lymphoblastic leukemia. Cancer Cell.
22:153–166. 2012.
|
27
|
Burmeister T, Gökbuget N, Reinhardt R,
Rieder H, Hoelzer D and Schwartz S: NUP214-ABL1 in adult T-ALL: the
GMALL study group experience. Blood. 108:3556–3559. 2006.
|
28
|
Ballerini P, Landman-Parker J, Cayuela JM,
et al: Impact of genotype on survival of children with T-cell acute
lymphoblastic leukemia treated according to the French protocol
FRALLE-93: the effect of TLX3/HOX11L2 gene expression on outcome.
Haematologica. 93:1658–1665. 2008.
|
29
|
Ballerini P, Busson M, Fasola S, et al:
NUP214-ABL1 amplification in t(5;14)/HOX11L2-positive ALL present
with several forms and may have a prognostic significance.
Leukemia. 19:468–470. 2005.
|
30
|
Graux C, Cools J, Melotte C, et al: Fusion
of NUP214 to ABL1 on amplified episomes in T-cell acute
lymphoblastic leukemia. Nat Genet. 36:1084–1089. 2004.
|
31
|
Hagemeijer A and Graux C: ABL1
rearrangements in T-cell acute lymphoblastic leukemia. Genes
Chromosomes Cancer. 49:299–308. 2010.
|
32
|
Quintás-Cardama A, Tong W, Manshouri T, et
al: Activity of tyrosine kinase inhibitors against human
NUP214-ABL1-positive T cell malignancies. Leukemia. 22:1117–1124.
2008.
|
33
|
Druker BJ: Translation of the Philadelphia
chromosome into therapy for CML. Blood. 112:4808–4817. 2008.
|
34
|
Kleppe M, Lahortiga I, El Chaar T, et al:
Deletion of the protein tyrosine phosphatase gene PTPN2 in T-cell
acute lymphoblastic leukemia. Nat Genet. 42:530–535. 2010.
|
35
|
Clarke S, O’Reilly J, Romeo G and Cooney
J: NUP214-ABL1 positive T-cell acute lymphoblastic leukemia patient
shows an initial favorable response to imatinib therapy post
relapse. Leuk Res. 35:e131–e133. 2011.
|
36
|
De Keersmaecker K, Porcu M, Cox L, et al:
NUP214-ABL1 mediated cell proliferation in T-cell acute
lymphoblastic leukemia is dependent on the LCK kinase and various
interacting proteins. Haematologica. 99:85–93. 2013.
|
37
|
De Keersmaecker K, Versele M, Cools J,
Superti-Furga G and Hantschel O: Intrinsic differences between the
catalytic properties of the oncogenic NUP214-ABL1 and BCR-ABL1
fusion protein kinases. Leukemia. 22:2208–2216. 2008.
|
38
|
Deenik W, Beverloo HB, van der Poel-van de
Luytgaarde SC, et al: Rapid complete cytogenetic remission after
upfront dasatinib monotherapy in a patient with a
NUP214-ABL1-positive T-cell acute lymphoblastic leukemia. Leukemia.
23:627–629. 2009.
|
39
|
Slovak ML, Gundacker H, Bloomfield CD, et
al: A retrospective study of 69 patients with t(6;9)(p23;q34) AML
emphasizes the need for a prospective, multicenter initiative for
rare ‘poor prognosis’ myeloid malignancies. Leukemia. 20:1295–1297.
2006.
|
40
|
Cho YU, Chi HS, Park CJ, Jang S and Seo
EJ: Rapid detection of prognostically significant fusion
transcripts in acute leukemia using simplified multiplex reverse
transcription polymerase chain reaction. J Korean Med Sci.
27:1155–1161. 2012.
|
41
|
Sandén C, Ageberg M, Petersson J,
Lennartsson A and Gullberg U: Forced expression of the DEK-NUP214
fusion protein promotes proliferation dependent on upregulation of
mTOR. BMC Cancer. 13:4402013.
|
42
|
von Lindern M, Fornerod M, van Baal S, et
al: The translocation (6;9), associated with a specific subtype of
acute myeloid leukemia, results in the fusion of two genes, dek and
can, and the expression of a chimeric, leukemia-specific dek-can
mRNA. Mol Cell Biol. 12:1687–1697. 1992.
|
43
|
Rowley JD: Recurring chromosome
abnormalities in leukemia and lymphoma. Semin Hematol. 27:122–136.
1990.
|
44
|
Chi Y, Lindgren V, Quigley S and Gaitonde
S: Acute myelogenous leukemia with t(6;9)(p23;q34) and marrow
basophilia: an overview. Arch Pathol Lab Med. 132:1835–1837.
2008.
|
45
|
Thiede C, Steudel C, Mohr B, et al:
Analysis of FLT3-activating mutations in 979 patients with acute
myelogenous leukemia: association with FAB subtypes and
identification of subgroups with poor prognosis. Blood.
99:4326–4335. 2002.
|
46
|
Garçon L, Libura M, Delabesse E, et al:
DEK-CAN molecular monitoring of myeloid malignancies could aid
therapeutic stratification. Leukemia. 19:1338–1344. 2005.
|
47
|
Pursiheimo JP, Rantanen K, Heikkinen PT,
Johansen T and Jaakkola PM: Hypoxia-activated autophagy accelerates
degradation of SQSTM1/p62. Oncogene. 28:334–344. 2009.
|
48
|
Gorello P, La Starza R, Di Giacomo D, et
al: SQSTM1-NUP214: a new gene fusion in adult T-cell acute
lymphoblastic leukemia. Haematologica. 95:2161–2163. 2010.
|
49
|
Saito S, Miyaji-Yamaguchi M and Nagata K:
Aberrant intracellular localization of SET-CAN fusion protein,
associated with a leukemia, disorganizes nuclear export. Int J
Cancer. 111:501–507. 2004.
|
50
|
Fornerod M, Boer J, van Baal S, Morreau H
and Grosveld G: Interaction of cellular proteins with the leukemia
specific fusion proteins DEK-CAN and SET-CAN and their normal
counterpart, the nucleoporin CAN. Oncogene. 13:1801–1808. 1996.
|
51
|
Calenda G, Peng J, Redman CM, Sha Q, Wu X
and Lee S: Identification of two new members, XPLAC and XTES, of
the XK family. Gene. 370:6–16. 2006.
|
52
|
Levin JZ, Berger MF, Adiconis X, et al:
Targeted next-generation sequencing of a cancer transcriptome
enhances detection of sequence variants and novel fusion
transcripts. Genome Biol. 10:R1152009.
|