1
|
Bartel DP: MicroRNAs: genomics,
biogenesis, mechanism, and function. Cell. 116:281–297. 2004.
|
2
|
Cho WC: MicroRNAs: potential biomarkers
for cancer diagnosis, prognosis and targets for therapy. Int J
Biochem Cell Biol. 42:1273–1281. 2010.
|
3
|
Zhou L, Zhao YP, Liu WJ, et al:
Circulating microRNAs in cancer: diagnostic and prognostic
significance. Expert Rev Anticancer Ther. 12:283–288. 2012.
|
4
|
Cortez MA, Bueso-Ramos C, Ferdin J, et al:
MicroRNAs in body fluids - the mix of hormones and biomarkers. Nat
Rev Clin Oncol. 8:467–477. 2011.
|
5
|
Tsim S, O’Dowd CA, Milroy R and Davidson
S: Staging of non-small cell lung cancer (NSCLC): a review. Respir
Med. 104:1767–1774. 2010.
|
6
|
Nance KV, Shermer RW and Askin FB:
Diagnostic efficacy of pleural biopsy as compared with that of
pleural fluid examination. Mod Pathol. 4:320–324. 1991.
|
7
|
Xie L, Chen X, Wang L, et al: Cell-free
miRNAs may indicate diagnosis and docetaxel sensitivity of tumor
cells in malignant effusions. BMC Cancer. 10:5912010.
|
8
|
Xie L, Wang T, Yu S, et al: Cell-free
miR-24 and miR-30d, potential diagnostic biomarkers in malignant
effusions. Clin Biochem. 44:216–220. 2011.
|
9
|
Han HS, Yun J, Lim SN, et al:
Downregulation of cell-free miR-198 as a diagnostic biomarker for
lung adenocarcinoma-associated malignant pleural effusion. Int J
Cancer. 133:645–652. 2013.
|
10
|
Mestdagh P, Van Vlierberghe P, De Weer A,
et al: A novel and universal method for microRNA RT-qPCR data
normalization. Genome Biol. 10:R642009.
|
11
|
Ratert N, Meyer HA, Jung M, et al:
Reference miRNAs for miRNAome analysis of urothelial carcinomas.
PLoS One. 7:e393092012.
|
12
|
Song J, Bai Z, Han W, et al:
Identification of suitable reference genes for qPCR analysis of
serum microRNA in gastric cancer patients. Dig Dis Sci. 57:897–904.
2012.
|
13
|
Wotschofsky Z, Meyer HA, Jung M, et al:
Reference genes for the relative quantification of microRNAs in
renal cell carcinomas and their metastases. Anal Biochem.
417:233–241. 2011.
|
14
|
Chang KH, Mestdagh P, Vandesompele J,
Kerin MJ and Miller N: MicroRNA expression profiling to identify
and validate reference genes for relative quantification in
colorectal cancer. BMC Cancer. 10:1732010.
|
15
|
Gee HE, Buffa FM, Camps C, et al: The
small-nucleolar RNAs commonly used for microRNA normalisation
correlate with tumour pathology and prognosis. Br J Cancer.
104:1168–1177. 2011.
|
16
|
Wang T, Lv M, Shen S, et al: Cell-free
microRNA expression profiles in malignant effusion associated with
patient survival in non-small cell lung cancer. PLoS One.
7:e432682012.
|
17
|
Andersen CL, Jensen JL and Ørntoft TF:
Normalization of real-time quantitative reverse transcription-PCR
data: a model-based variance estimation approach to identify genes
suited for normalization, applied to bladder and colon cancer data
sets. Cancer Res. 64:5245–5250. 2004.
|
18
|
Pfaffl MW, Tichopad A, Prgomet C and
Neuvians TP: Determination of stable housekeeping genes,
differentially regulated target genes and sample integrity:
BestKeeper - Excel-based tool using pair-wise correlations.
Biotechnol Lett. 26:509–515. 2004.
|
19
|
Song B, Wang Y, Kudo K, et al: miR-192
Regulates Dihydrofolate Reductase and Cellular Proliferation
through the p53-microRNA Circuit. Clin Cancer Res. 14:8080–8086.
2008.
|
20
|
Wu H, Wang F, Hu S, et al: MiR-20a and
miR-106b negatively regulate autophagy induced by leucine
deprivation via suppression of ULK1 expression in C2C12 myoblasts.
Cell Signal. 24:2179–2186. 2012.
|
21
|
Visone R, Russo L, Pallante P, et al:
MicroRNAs (miR)-221 and miR-222, both overexpressed in human
thyroid papillary carcinomas, regulate p27Kip1 protein levels and
cell cycle. Endocr Relat Cancer. 14:791–798. 2007.
|
22
|
Cimmino A, Calin GA, Fabbri M, et al:
miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl
Acad Sci USA. 102:13944–13949. 2005.
|
23
|
Kiss T: Small nucleolar RNA-guided
post-transcriptional modification of cellular RNAs. EMBO J.
20:3617–3622. 2001.
|
24
|
Dieci G, Preti M and Montanini B:
Eukaryotic snoRNAs: a paradigm for gene expression flexibility.
Genomics. 94:83–88. 2009.
|
25
|
Galardi S, Fatica A, Bachi A, et al:
Purified box C/D snoRNPs are able to reproduce site-specific
2′-O-methylation of target RNA in vitro. Mol Cell Biol.
22:6663–6668. 2002.
|
26
|
Peltier HJ and Latham GJ: Normalization of
microRNA expression levels in quantitative RT-PCR assays:
identification of suitable reference RNA targets in normal and
cancerous human solid tissues. RNA. 14:844–852. 2008.
|
27
|
Chen X, Ba Y, Ma L, et al:
Characterization of microRNAs in serum: a novel class of biomarkers
for diagnosis of cancer and other diseases. Cell Res. 18:997–1006.
2008.
|
28
|
Git A, Dvinge H, Salmon-Divon M, et al:
Systematic comparison of microarray profiling, real-time PCR, and
next-generation sequencing technologies for measuring differential
microRNA expression. RNA. 16:991–1006. 2010.
|
29
|
Dong XY, Guo P, Boyd J, et al: Implication
of snoRNA U50 in human breast cancer. J Genet Genomics. 36:447–454.
2009.
|
30
|
Mourtada-Maarabouni M, Pickard MR, Hedge
VL, Farzaneh F and Williams GT: GAS5, a non-protein-coding RNA,
controls apoptosis and is downregulated in breast cancer. Oncogene.
28:195–208. 2009.
|
31
|
Kroh EM, Parkin RK, Mitchell PS and Tewari
M: Analysis of circulating microRNA biomarkers in plasma and serum
using quantitative reverse transcription-PCR (qRT-PCR). Methods.
50:298–301. 2010.
|
32
|
Tricarico C, Pinzani P, Bianchi S, et al:
Quantitative real-time reverse transcription polymerase chain
reaction: normalization to rRNA or single housekeeping genes is
inappropriate for human tissue biopsies. Anal Biochem. 309:293–300.
2002.
|