1
|
Wen PY and Kesari S: Malignant gliomas in
adults. N Engl J Med. 359:492–507. 2008. View Article : Google Scholar : PubMed/NCBI
|
2
|
Buonerba C, Di Lorenzo G, Marinelli A, et
al: A comprehensive outlook on intracerebral therapy of malignant
gliomas. Crit Rev Oncol Hematol. 80:54–68. 2011. View Article : Google Scholar : PubMed/NCBI
|
3
|
Sherman JH, Hoes K, Marcus J, Komotar RJ,
Brennan CW and Gutin PH: Neurosurgery for brain tumors: update on
recent technical advances. Curr Neurol Neurosci Rep. 11:313–319.
2011. View Article : Google Scholar : PubMed/NCBI
|
4
|
Onishi M, Ichikawa T, Kurozumi K and Date
I: Angiogenesis and invasion in glioma. Brain Tumor Pathol.
28:13–24. 2011. View Article : Google Scholar : PubMed/NCBI
|
5
|
Kim CS, Jung S, Jung TY, Jang WY, Sun HS
and Ryu HH: Characterization of invading glioma cells using
molecular analysis of leading-edge tissue. J Korean Neurosurg Soc.
50:157–165. 2011. View Article : Google Scholar : PubMed/NCBI
|
6
|
Ohgaki H and Kleihues P: Population-based
studies on incidence, survival rates, and genetic alterations in
astrocytic and oligodendroglial gliomas. J Neuropathol Exp Neurol.
64:479–489. 2005.PubMed/NCBI
|
7
|
Rutka JT, Taylor M, Mainprize T, Langlois
A, Ivanchuk S, Mondal S and Dirks P: Molecular biology and
neurosurgery in the third millennium. Neurosurgery. 46:1034–1051.
2000. View Article : Google Scholar : PubMed/NCBI
|
8
|
DeSalle LM and Pagano M: Regulation of the
G1 to S transition by the ubiquitin pathway. FEBS Lett.
490:179–189. 2001. View Article : Google Scholar : PubMed/NCBI
|
9
|
Pickart CM: Mechanisms underlying
ubiquitination. Annu Rev Biochem. 70:503–533. 2001. View Article : Google Scholar : PubMed/NCBI
|
10
|
Ciechanover A, Orian A and Schwartz AL:
Ubiquitin-mediated proteolysis: biological regulation via
destruction. BioEssays. 22:442–451. 2000. View Article : Google Scholar : PubMed/NCBI
|
11
|
Zhou P: Targeted protein degradation. Curr
Opin Chem Biol. 9:51–55. 2005. View Article : Google Scholar : PubMed/NCBI
|
12
|
Hershko A and Ciechanover A: The ubiquitin
system. Annu Rev Biochem. 67:425–479. 1998. View Article : Google Scholar : PubMed/NCBI
|
13
|
Maniatis T: A ubiquitin ligase complex
essential for the NF-kappaB, Wnt/Wingless and Hedgehog signaling
pathways. Genes Dev. 13:505–510. 1999. View Article : Google Scholar : PubMed/NCBI
|
14
|
Liu C, Kato Y, Zhang Z, Do VM, Yankner BA
and He X: beta-Trcp couples beta-catenin
phosphorylation-degradation and regulates Xenopus axis formation.
Proc Natl Acad Sci USA. 96:6273–6278. 1999. View Article : Google Scholar : PubMed/NCBI
|
15
|
Busino L, Donzelli M, Chiesa M, et al:
Degradation of Cdc25A by beta-TrCP during S phase and in response
to DNA damage. Nature. 426:87–91. 2003. View Article : Google Scholar : PubMed/NCBI
|
16
|
Watanabe N, Arai H, Nishihara Y, Taniguchi
M, Watanabe N, Hunter T and Osada H: M-phase kinases induce
phospho-dependent ubiquitination of somatic Weel by SCFbeta-TrCP.
Proc Natl Acad Sci USA. 101:4419–4424. 2004. View Article : Google Scholar : PubMed/NCBI
|
17
|
Sahasrabuddhe AA, Dimri M, Bommi PV and
Dimri GP: βTrCP regulates BMI1 protein turnover via ubiquitination
and degradation. Cell Cycle. 10:1322–1330. 2011. View Article : Google Scholar : PubMed/NCBI
|
18
|
Fuchs SY, Chen A, Xiong Y, Pan ZQ and
Ronai Z: HOS, a human homolog of Slimb, forms an SCF complex with
Skp1 and Cullin1 and targets the phosphorylation-dependent
degradation of IkappaB and beta-catenin. Oncogene. 18:2039–2046.
1999. View Article : Google Scholar : PubMed/NCBI
|
19
|
Hart M, Concordet JP, Lassot I, et al: The
F-box protein beta-TrCP associates with phosphorylated beta-catenin
and regulates its activity in the cell. Curr Biol. 9:207–210. 1999.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Latres E, Chiaur DS and Pagano M: The
human F box protein beta-Trcp associates with the Cul1/Skp1 complex
and regulates the stability of beta-catenin. Oncogene. 18:849–854.
1999. View Article : Google Scholar : PubMed/NCBI
|
21
|
Margottin-Goguet F, Hsu JY, Loktev A,
Hsieh HM, Reimann JD and Jackson PK: Prophase destruction of Emi1
by the SCF (betaTrCP/Slimb) ubiquitin ligase activates the anaphase
promoting complex to allow progression beyond prometaphase. Dev
Cell. 4:813–826. 2003. View Article : Google Scholar : PubMed/NCBI
|
22
|
Lang V, Janzen J, Fischer GZ, et al:
betaTrCP-mediated proteolysis of NF-kappaB1 p105 requires
phosphorylation of p105 serines 927 and 932. Mol Cell Biol.
23:402–413. 2003. View Article : Google Scholar : PubMed/NCBI
|
23
|
Zhong J, Shaik S, Wan L, et al: SCF β-TRCP
targets MTSS1 for ubiquitination-mediated destruction to regulate
cancer cell proliferation and migration. Oncotarget. 4:2339–2353.
2013.PubMed/NCBI
|
24
|
Shaik S, Nucera C, Inuzuka H, et al: SCF
(β-TRCP) suppresses angiogenesis and thyroid cancer cell migration
by promoting ubiquitination and destruction of VEGF receptor 2. J
Exp Med. 209:1289–1307. 2012. View Article : Google Scholar : PubMed/NCBI
|
25
|
Wan M, Huang J, Jhala NC, et al:
SCF(beta-TrCP1) controls Smad4 protein stability in pancreatic
cancer cells. Am J Pathol. 166:1379–1392. 2005. View Article : Google Scholar : PubMed/NCBI
|
26
|
He N, Li C, Zhang X, et al: Regulation of
lung cancer cell growth and invasiveness by beta-TRCP. Mol
Carcinog. 42:18–28. 2005. View
Article : Google Scholar : PubMed/NCBI
|
27
|
Peus D, Newcomb N and Hofer S: Appraisal
of the Karnofsky Performance Status and proposal of a simple
algorithmic system for its evaluation. BMC Med Inform Decis Mak.
13:722013. View Article : Google Scholar : PubMed/NCBI
|
28
|
Rosenblum MK: The 2007 WHO Classification
of Nervous System Tumors: newly recognized members of the mixed
glioneuronal group. Brain Pathol. 17:308–313. 2007. View Article : Google Scholar : PubMed/NCBI
|
29
|
Scherer DC, Brockman JA, Chen Z, Maniatis
T and Ballard DW: Signal-induced degradation of I kappa B alpha
requires site-specific ubiquitination. Proc Natl Acad Sci USA.
92:11259–11263. 1995. View Article : Google Scholar : PubMed/NCBI
|
30
|
Gao G, Kun T, Sheng Y, et al: SGT1
regulates Akt signaling by promoting beta-TrCP-dependent PHLPP1
degradation in gastric cancer cells. Mol Biol Rep. 40:2947–2953.
2013. View Article : Google Scholar : PubMed/NCBI
|
31
|
Gluschnaider U, Hidas G, Cojocaru G,
Yutkin V, Ben-Neriah Y and Pikarsky E: beta-TrCP inhibition reduces
prostate cancer cell growth via upregulation of the aryl
hydrocarbon receptor. PLoS One. 5:e90602010. View Article : Google Scholar : PubMed/NCBI
|
32
|
Tang W, Li Y, Yu D, Thomas-Tikhonenko A,
Spiegelman VS and Fuchs SY: Targeting beta-transducin
repeat-containing protein E3 ubiquitin ligase augments the effects
of antitumor drugs on breast cancer cells. Cancer Res.
65:1904–1908. 2005. View Article : Google Scholar : PubMed/NCBI
|
33
|
Ougolkov A, Zhang B, Yamashita K, et al:
Associations among beta-TrCP, an E3 ubiquitin ligase receptor,
beta-catenin and NF-kappaB in colorectal cancer. J Natl Cancer
Inst. 96:1161–1170. 2004. View Article : Google Scholar : PubMed/NCBI
|
34
|
Warfel NA, Niederst M, Stevens MW, Brennan
PM, Frame MC and Newton AC: Mislocalization of the E3 ligase,
β-transducin repeat-containing protein 1 (β-TrCP1), in glioblastoma
uncouples negative feedback between the pleckstrin homology domain
leucine-rich repeat protein phosphatase 1 (PHLPP1) and Akt. J Biol
Chem. 286:19777–19788. 2011. View Article : Google Scholar : PubMed/NCBI
|
35
|
Wu Z, Wang Q, Wang L, et al: Combined
aberrant expression of Bmi1 and EZH2 is predictive of poor
prognosis in glioma patients. J Neurol Sci. 335:191–196. 2013.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Tu Y, Gao X, Li G, et al: MicroRNA-218
inhibits glioma invasion, migration, proliferation and cancer
stem-like cell self-renewal by targeting the polycomb group gene
Bmi1. Cancer Res. 73:6046–6055. 2013. View Article : Google Scholar : PubMed/NCBI
|
37
|
Vlachostergios PJ and Papandreou CN: The
Bmi-1/NF-ĸB/VEGF story: another hint for proteasome involvement in
glioma angiogenesis? J Cell Commun Signal. 7:235–237. 2013.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Li Y, Hu J, Guan F, et al: Copper induces
cellular senescence in human glioblastoma multiforme cells through
downregulation of Bmi-1. Oncol Rep. 29:1805–1810. 2013.PubMed/NCBI
|
39
|
Jiang L, Song L, Wu J, et al: Bmi-1
promotes glioma angiogenesis by activating NF-ĸB signaling. PLoS
One. 8:e555272013. View Article : Google Scholar : PubMed/NCBI
|