1
|
Valkov A, Kilvaer TK, Sorbye SW, et al:
The prognostic impact of Akt isoforms, PI3K and PTEN related to
female steroid hormone receptors in soft tissue sarcomas. J Transl
Med. 9:2002011. View Article : Google Scholar : PubMed/NCBI
|
2
|
Helman LJ and Meltzer P: Mechanisms of
sarcoma development. Nat Rev Cancer. 3:685–694. 2003. View Article : Google Scholar : PubMed/NCBI
|
3
|
Coindre JM: New WHO classification of
tumours of soft tissue and bone. Ann Pathol. 32:S115–S116. 2012.(In
French). PubMed/NCBI
|
4
|
Klein MJ and Siegal GP: Osteosarcoma:
anatomic and histologic variants. Am J Clin Pathol. 125:555–581.
2006. View Article : Google Scholar : PubMed/NCBI
|
5
|
de Bruijn DR, Allander SV, van Dijk AH, et
al: The synovial-sarcoma-associated SS18-SSX2 fusion protein
induces epigenetic gene (de)regulation. Cancer Res. 66:9474–9482.
2006. View Article : Google Scholar : PubMed/NCBI
|
6
|
Sun Y, Gao D, Liu Y, Huang J, Lessnick S
and Tanaka S: IGF2 is critical for tumorigenesis by synovial
sarcoma oncoprotein SYT-SSX1. Oncogene. 25:1042–1052. 2006.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Kashima TG, Gamage NG, Dirksen U, Gibbons
CL, Ostlere SJ and Athanasou NA: Localized Ewing sarcoma of the
tibia. Clin Sarcoma Res. 3:22013. View Article : Google Scholar : PubMed/NCBI
|
8
|
Choi EY, Gardner JM, Lucas DR, McHugh JB
and Patel RM: Ewing sarcoma. Semin Diagn Pathol. 31:39–47. 2014.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Kämmerer PW, Shabazfar N, Vorkhshori
Makoie N, Moergel M and Al-Nawas B: Clinical, therapeutic and
prognostic features of osteosarcoma of the jaws - experience of 36
cases. J Craniomaxillofac Surg. 40:541–548. 2012. View Article : Google Scholar : PubMed/NCBI
|
10
|
Steen S and Stephenson G: Current
treatment of soft tissue sarcoma. In: Proc (Bayl Univ Med Cent).
21. pp. 392–396. 2008; PubMed/NCBI
|
11
|
von Mehren M, Randall RL, Benjamin RS, et
al: National Comprehensive Cancer Network: Soft tissue sarcoma,
version 2.2014. J Natl Compr Canc Netw. 12:473–483. 2014.PubMed/NCBI
|
12
|
Clark MA, Fisher C, Judson I and Thomas
JM: Soft-tissue sarcomas in adults. N Engl J Med. 353:701–711.
2005. View Article : Google Scholar : PubMed/NCBI
|
13
|
Demicco EG, Maki RG, Lev DC and Lazar AJ:
New therapeutic targets in soft tissue sarcoma. Adv Anat Pathol.
19:170–180. 2012. View Article : Google Scholar : PubMed/NCBI
|
14
|
Byeon SE, Yi YS, Oh J, Yoo BC, Hong S and
Cho JY: The role of Src kinase in macrophage-mediated inflammatory
responses. Mediators Inflamm. 2012:5129262012.PubMed/NCBI
|
15
|
Levinson WE, Varmus HE, Garapin AC and
Bishop JM: DNA of Rous sarcoma virus: its nature and significance.
Science. 175:76–78. 1972. View Article : Google Scholar : PubMed/NCBI
|
16
|
Gojis O, Rudraraju B, Gudi M, et al: The
role of SRC-3 in human breast cancer. Nat Rev Clin Oncol. 7:83–89.
2010. View Article : Google Scholar : PubMed/NCBI
|
17
|
Boggon TJ and Eck MJ: Structure and
regulation of Src family kinases. Oncogene. 23:7918–7927. 2004.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Guarino M: Src signaling in cancer
invasion. J Cell Physiol. 223:14–26. 2010.PubMed/NCBI
|
19
|
Hunter T and Sefton BM: Transforming gene
product of Rous sarcoma virus phosphorylates tyrosine. In: Proc
Natl Acad Sci USA. 77. pp. 1311–1315. 1980; View Article : Google Scholar : PubMed/NCBI
|
20
|
Roskoski R Jr: Src kinase regulation by
phosphorylation and dephosphorylation. Biochem Biophys Res Commun.
331:1–14. 2005. View Article : Google Scholar : PubMed/NCBI
|
21
|
Bjorge JD, Jakymiw A and Fujita DJ:
Selected glimpses into the activation and function of Src kinase.
Oncogene. 19:5620–5635. 2000. View Article : Google Scholar : PubMed/NCBI
|
22
|
Zheng XM, Resnick RJ and Shalloway D: A
phosphotyrosine displacement mechanism for activation of Src by
PTPalpha. EMBO J. 19:964–978. 2000. View Article : Google Scholar : PubMed/NCBI
|
23
|
Cooper JA, Gould KL, Cartwright CA and
Hunter T: Tyr527 is phosphorylated in pp60c-src: implications for
regulation. Science. 231:1431–1434. 1986. View Article : Google Scholar : PubMed/NCBI
|
24
|
Levin VA: Basis and importance of Src as a
target in cancer. Cancer Treat Res. 119:89–119. 2004.PubMed/NCBI
|
25
|
Sirvent A, Benistant C and Roche S:
Oncogenic signaling by tyrosine kinases of the SRC family in
advanced colorectal cancer. Am J Cancer Res. 2:357–371.
2012.PubMed/NCBI
|
26
|
Cao M, Hou D, Liang H, et al: miR-150
promotes the proliferation and migration of lung cancer cells by
targeting SRC kinase signalling inhibitor 1. Eur J Cancer.
50:1013–1024. 2014. View Article : Google Scholar : PubMed/NCBI
|
27
|
Roskoski R Jr: Src protein-tyrosine kinase
structure and regulation. Biochem Biophys Res Commun.
324:1155–1164. 2004. View Article : Google Scholar : PubMed/NCBI
|
28
|
Zhang S, Huang WC, Zhang L, et al: SRC
family kinases as novel therapeutic targets to treat breast cancer
brain metastases. Cancer Res. 73:5764–5774. 2013. View Article : Google Scholar : PubMed/NCBI
|
29
|
Gargalionis AN, Karamouzis MV and
Papavassiliou AG: The molecular rationale of Src inhibition in
colorectal carcinomas. Int J Cancer. 134:2019–2029. 2014.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Je DW, O YM, Ji YG, Cho Y and Lee DH: The
inhibition of SRC family kinase suppresses pancreatic cancer cell
proliferation, migration, and invasion. Pancreas. 43:768–776. 2014.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Saini S, Majid S, Shahryari V, et al:
Regulation of SRC Kinases by microRNA-3607 located in a frequently
deleted locus in prostate cancer. Mol Cancer Ther. 13:1952–1963.
2014. View Article : Google Scholar : PubMed/NCBI
|
32
|
Balkwill F: The significance of cancer
cell expression of the chemokine receptor CXCR4. Semin Cancer Biol.
14:171–179. 2004. View Article : Google Scholar : PubMed/NCBI
|
33
|
Kulbe H, Levinson NR, Balkwill F and
Wilson JL: The chemokine network in cancer - much more than
directing cell movement. Int J Dev Biol. 48:489–496. 2004.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Bjorge JD, Pang A and Fujita DJ:
Identification of protein-tyrosine phosphatase 1B as the major
tyrosine phosphatase activity capable of dephosphorylating and
activating c-Src in several human breast cancer cell lines. J Biol
Chem. 275:41439–41446. 2000. View Article : Google Scholar : PubMed/NCBI
|
35
|
Dehm SM and Bonham K: SRC gene expression
in human cancer: the role of transcriptional activation. Biochem
Cell Biol. 82:263–274. 2004. View
Article : Google Scholar : PubMed/NCBI
|
36
|
Mirmohammadsadegh A, Hassan M, Bardenheuer
W, et al: STAT5 phosphorylation in malignant melanoma is important
for survival and is mediated through SRC and JAK1 kinases. J Invest
Dermatol. 126:2272–2280. 2006. View Article : Google Scholar : PubMed/NCBI
|
37
|
Niu G, Bowman T, Huang M, et al: Roles of
activated Src and Stat3 signaling in melanoma tumor cell growth.
Oncogene. 21:7001–7010. 2002. View Article : Google Scholar : PubMed/NCBI
|
38
|
Song L, Morris M, Bagui T, Lee FY, Jove R
and Haura EB: Dasatinib (BMS-354825) selectively induces apoptosis
in lung cancer cells dependent on epidermal growth factor receptor
signaling for survival. Cancer Res. 66:5542–5548. 2006. View Article : Google Scholar : PubMed/NCBI
|
39
|
Chen Z, Lee FY, Bhalla KN and Wu J: Potent
inhibition of platelet-derived growth factor-induced responses in
vascular smooth muscle cells by BMS-354825 (dasatinib). Mol
Pharmacol. 69:1527–1533. 2006. View Article : Google Scholar : PubMed/NCBI
|
40
|
Schittenhelm MM, Shiraga S, Schroeder A,
et al: Dasatinib (BMS-354825), a dual SRC/ABL kinase inhibitor,
inhibits the kinase activity of wild-type, juxtamembrane, and
activation loop mutant KIT isoforms associated with human
malignancies. Cancer Res. 66:473–481. 2006. View Article : Google Scholar : PubMed/NCBI
|
41
|
Nakata Y, Tomkowicz B, Gewirtz AM and
Ptasznik A: Integrin inhibition through Lyn-dependent cross talk
from CXCR4 chemokine receptors in normal human CD34+ marrow cells.
Blood. 107:4234–4239. 2006. View Article : Google Scholar : PubMed/NCBI
|
42
|
Chen YY, Malik M, Tomkowicz BE, Collman RG
and Ptasznik A: BCR-ABL1 alters SDF-1alpha-mediated adhesive
responses through the beta2 integrin LFA-1 in leukemia cells.
Blood. 111:5182–5186. 2008. View Article : Google Scholar : PubMed/NCBI
|
43
|
Smolinska MJ, Page TH, Urbaniak AM, Mutch
BE and Horwood NJ: Hck tyrosine kinase regulates TLR4-induced TNF
and IL-6 production via AP-1. J Immunol. 187:6043–6051. 2011.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Lutz MP, Esser IB, Flossmann-Kast BB, et
al: Overexpression and activation of the tyrosine kinase Src in
human pancreatic carcinoma. Biochem Biophys Res Commun.
243:503–508. 1998. View Article : Google Scholar : PubMed/NCBI
|
45
|
Shor AC, Keschman EA, Lee FY, et al:
Dasatinib inhibits migration and invasion in diverse human sarcoma
cell lines and induces apoptosis in bone sarcoma cells dependent on
SRC kinase for survival. Cancer Res. 67:2800–2808. 2007. View Article : Google Scholar : PubMed/NCBI
|
46
|
Michels S, Trautmann M, Sievers E, et al:
SRC signaling is crucial in the growth of synovial sarcoma cells.
Cancer Res. 73:2518–2528. 2013. View Article : Google Scholar : PubMed/NCBI
|
47
|
Díaz-Montero CM, Wygant JN and McIntyre
BW: PI3-K/Akt-mediated anoikis resistance of human osteosarcoma
cells requires Src activation. Eur J Cancer. 42:1491–1500. 2006.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Villacis RA, Silveira SM, Barros-Filho MC,
et al: Gene expression profiling in leiomyosarcomas and
undifferentiated pleomorphic sarcomas: SRC as a new diagnostic
marker. PLoS One. 9:e1022812014. View Article : Google Scholar : PubMed/NCBI
|
49
|
Bai Y, Li J, Fang B, et al:
Phosphoproteomics identifies driver tyrosine kinases in sarcoma
cell lines and tumors. Cancer Res. 72:2501–2511. 2012. View Article : Google Scholar : PubMed/NCBI
|
50
|
Geng S, Wang X, Xu X, et al: Steroid
receptor co-activator-3 promotes osteosarcoma progression through
up-regulation of FoxM1. Tumour Biol. 35:3087–3094. 2014. View Article : Google Scholar : PubMed/NCBI
|
51
|
Scully SP, Layfield LJ and Harrelson JM:
Prognostic markers in chondrosarcoma: evaluation of cell
proliferation and of regulators of the cell cycle. Sarcoma.
1:79–87. 1997. View Article : Google Scholar : PubMed/NCBI
|
52
|
Watanabe T, Tsuda M, Tanaka S, et al:
Adaptor protein Crk induces Src-dependent activation of p38 MAPK in
regulation of synovial sarcoma cell proliferation. Mol Cancer Res.
7:1582–1592. 2009. View Article : Google Scholar : PubMed/NCBI
|
53
|
Watanabe T, Tsuda M, Makino Y, et al:
Adaptor molecule Crk is required for sustained phosphorylation of
Grb2-associated binder 1 and hepatocyte growth factor-induced cell
motility of human synovial sarcoma cell lines. Mol Cancer Res.
4:499–510. 2006. View Article : Google Scholar : PubMed/NCBI
|
54
|
Mazzone M and Comoglio PM: The Met
pathway: master switch and drug target in cancer progression. FASEB
J. 20:1611–1621. 2006. View Article : Google Scholar : PubMed/NCBI
|
55
|
Spreafico A, Schenone S, Serchi T, et al:
Antiproliferative and proapoptotic activities of new
pyrazolo[3,4-d]pyrimidine derivative Src kinase inhibitors in human
osteosarcoma cells. FASEB J. 22:1560–1571. 2008.PubMed/NCBI
|
56
|
Hingorani P, Zhang W, Gorlick R and Kolb
EA: Inhibition of Src phosphorylation alters metastatic potential
of osteosarcoma in vitro but not in vivo. Clin Cancer Res.
15:3416–3422. 2009. View Article : Google Scholar : PubMed/NCBI
|
57
|
Horng CT, Shieh PC, Tan TW, Yang WH and
Tang CH: Paeonol suppresses chondrosarcoma metastasis through
up-regulation of miR-141 by modulating PKCδ and c-Src signaling
pathway. Int J Mol Sci. 15:11760–11772. 2014. View Article : Google Scholar : PubMed/NCBI
|
58
|
Wu CM, Li TM, Tan TW, Fong YC and Tang CH:
Berberine Reduces the Metastasis of Chondrosarcoma by Modulating
the α v β 3 Integrin and the PKC δ, c-Src, and AP-1 Signaling
Pathways. Evid Based Complement Alternat Med.
2013:4231642013.PubMed/NCBI
|
59
|
van Oosterwijk JG, van Ruler MA,
Briaire-de Bruijn IH, et al: Src kinases in chondrosarcoma
chemoresistance and migration: dasatinib sensitises to doxorubicin
in TP53 mutant cells. Br J Cancer. 109:1214–1222. 2013. View Article : Google Scholar : PubMed/NCBI
|
60
|
Guarino M: Epithelial-mesenchymal
transition and tumour invasion. Int J Biochem Cell Biol.
39:2153–2160. 2007. View Article : Google Scholar : PubMed/NCBI
|
61
|
Boyer B, Bourgeois Y and Poupon MF: Src
kinase contributes to the metastatic spread of carcinoma cells.
Oncogene. 21:2347–2356. 2002. View Article : Google Scholar : PubMed/NCBI
|
62
|
Huang WS, Wang RJ, Ding JL, et al:
Caveolin-1: a novel biomarker for prostate cancer. Zhonghua Nan Ke
Xue. 18:635–638. 2012.(In Chinese). PubMed/NCBI
|
63
|
Mercier I and Lisanti MP: Caveolin-1 and
breast cancer: a new clinical perspective. Adv Exp Med Biol.
729:83–94. 2012.PubMed/NCBI
|
64
|
Cantiani L, Manara MC, Zucchini C, et al:
Caveolin-1 reduces osteosarcoma metastases by inhibiting c-Src
activity and met signaling. Cancer Res. 67:7675–7685. 2007.
View Article : Google Scholar : PubMed/NCBI
|
65
|
Manara MC, Bernard G, Lollini PL, et al:
CD99 acts as an oncosuppressor in osteosarcoma. Mol Biol Cell.
17:1910–1921. 2006. View Article : Google Scholar : PubMed/NCBI
|
66
|
Scotlandi K, Zuntini M, Manara MC, et al:
CD99 isoforms dictate opposite functions in tumour malignancy and
metastases by activating or repressing c-Src kinase activity.
Oncogene. 26:6604–6618. 2007. View Article : Google Scholar : PubMed/NCBI
|
67
|
Abraham J, Chua YX, Glover JM, et al: An
adaptive Src-PDGFRA-Raf axis in rhabdomyosarcoma. Biochem Biophys
Res Commun. 426:363–368. 2012. View Article : Google Scholar : PubMed/NCBI
|
68
|
Homsi J, Cubitt C and Daud A: The Src
signaling pathway: a potential target in melanoma and other
malignancies. Expert Opin Ther Targets. 11:91–100. 2007. View Article : Google Scholar : PubMed/NCBI
|
69
|
Creedon H and Brunton VG: Src kinase
inhibitors: promising cancer therapeutics? Crit Rev Oncog.
17:145–159. 2012. View Article : Google Scholar : PubMed/NCBI
|
70
|
Molina JR, Foster NR, Reungwetwattana T,
et al: A phase II trial of the Src-kinase inhibitor saracatinib
after four cycles of chemotherapy for patients with extensive stage
small cell lung cancer: NCCTG trial N-0621. Lung Cancer.
85:245–250. 2014. View Article : Google Scholar : PubMed/NCBI
|
71
|
Taylor JW, Dietrich J, Gerstner ER, et al:
Phase 2 study of bosutinib, a Src inhibitor, in adults with
recurrent glioblastoma. J Neurooncol. Nov 20–2014.(Epub ahead of
print).
|
72
|
Montero JC, Seoane S, Ocaña A and
Pandiella A: Inhibition of SRC family kinases and receptor tyrosine
kinases by dasatinib: possible combinations in solid tumors. Clin
Cancer Res. 17:5546–5552. 2011. View Article : Google Scholar : PubMed/NCBI
|
73
|
Schrage YM, Briaire-de Bruijn IH, de
Miranda NF, et al: Kinome profiling of chondrosarcoma reveals
SRC-pathway activity and dasatinib as option for treatment. Cancer
Res. 69:6216–6222. 2009. View Article : Google Scholar : PubMed/NCBI
|
74
|
Musumeci F, Schenone S, Brullo C and Botta
M: An update on dual Src/Abl inhibitors. Future Med Chem.
4:799–822. 2012. View Article : Google Scholar : PubMed/NCBI
|
75
|
Girotti MR, Lopes F, Preece N, et al:
Paradox-Breaking RAF Inhibitors that Also Target SRC Are Effective
in Drug-Resistant BRAF Mutant Melanoma. Cancer Cell. 27:85–96.
2015. View Article : Google Scholar : PubMed/NCBI
|
76
|
Rotert JV, Leupold J, Hohenberger P, Nowak
K and Allgayer H: Src activity is increased in gastrointestinal
stromal tumors - analysis of associations with clinical and other
molecular tumor characteristics. J Surg Oncol. 109:597–605. 2014.
View Article : Google Scholar : PubMed/NCBI
|
77
|
Qayyum T, McArdle PA, Lamb GW, et al:
Expression and prognostic significance of Src family members in
renal clear cell carcinoma. Br J Cancer. 107:856–863. 2012.
View Article : Google Scholar : PubMed/NCBI
|
78
|
Sell H, Habich C and Eckel J: Adaptive
immunity in obesity and insulin resistance. Nat Rev Endocrinol.
8:709–716. 2012. View Article : Google Scholar : PubMed/NCBI
|
79
|
Spaeth E, Klopp A, Dembinski J, Andreeff M
and Marini F: Inflammation and tumor microenvironments: defining
the migratory itinerary of mesenchymal stem cells. Gene Ther.
15:730–738. 2008. View Article : Google Scholar : PubMed/NCBI
|
80
|
Hemmerle T, Probst P, Giovannoni L, Green
AJ, Meyer T and Neri D: The antibody-based targeted delivery of TNF
in combination with doxorubicin eradicates sarcomas in mice and
confers protective immunity. Br J Cancer. 109:1206–1213. 2013.
View Article : Google Scholar : PubMed/NCBI
|
81
|
Spitaleri G, Berardi R, Pierantoni C, et
al: Phase I/II study of the tumour-targeting human monoclonal
antibody-cytokine fusion protein L19-TNF in patients with advanced
solid tumours. J Cancer Res Clin Oncol. 139:447–455. 2013.
View Article : Google Scholar : PubMed/NCBI
|