1
|
Parkin DM and Bray F: Chapter 2: The
burden of HPV-related cancers. Vaccine. 24 (Suppl 3):(3): 11–25.
2006. View Article : Google Scholar
|
2
|
Almonte M, Albero G, Molano M, et al: Risk
factors for human papillomavirus exposure and co factors for
cervical cancer in Latin America and the Caribbean. Vaccine.
26:L16–L36. 2008. View Article : Google Scholar : PubMed/NCBI
|
3
|
Deligeoroglou E, Giannouli A,
Athanasopoulos N, et al: HPV infection: Immunological aspects and
their utility in future therapy. Infect Dis Obstet Gynecol.
2013:5408502013. View Article : Google Scholar : PubMed/NCBI
|
4
|
Bernard HU, Burk RD, Chen Z, et al:
Classification of papillomaviruses (PVs) based on 189 PV types and
proposal of taxonomic amendments. Virology. 401:70–79. 2010.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Bouvard V, Baan R, Straif K, et al: A
review of human carcinogens-Part B: Biological agents. Lancet
Oncol. 10:321–322. 2009. View Article : Google Scholar : PubMed/NCBI
|
6
|
Coutlée F, Rouleau D, Petignat P, et al:
Enhanced detection and typing of human papillomavirus (HPV) DNA in
anogenital samples with PGMY primers and the Linear array HPV
genotyping test. J Clin Microbiol. 44:1998–2006. 2006. View Article : Google Scholar : PubMed/NCBI
|
7
|
Smith JS, Lindsay L, Hoots B, et al: Human
papillomavirus type distribution in invasive cervical cancer and
high-grade cervical lesions: A meta-analysis update. Int J Cancer.
121:621–632. 2007. View Article : Google Scholar : PubMed/NCBI
|
8
|
Cerqueira C, Liu Y, Kühling L, et al:
Heparin increases the infectivity of Human Papillomavirus type 16
independent of cell surface proteoglycans and induces L1 epitope
exposure. Cell Microbiol. 15:1818–1836. 2013.PubMed/NCBI
|
9
|
Surviladze Z, Dziduszko A and Ozbun MA:
Essential roles for soluble virion-associated heparan sulfonated
proteoglycans and growth factors in human papillomavirus
infections. PLoS Pathog. 8:e10025192012. View Article : Google Scholar : PubMed/NCBI
|
10
|
Raff AB, Woodham AW, Raff LM, et al: The
evolving field of human papillomavirus receptor research: A review
of binding and entry. J Virol. 87:6062–6072. 2013. View Article : Google Scholar : PubMed/NCBI
|
11
|
Horvath CA, Boulet GA, Renoux VM, Delvenne
PO and Bogers JP: Mechanisms of cell entry by human
papillomaviruses: An overview. Virol J. 7:112010. View Article : Google Scholar : PubMed/NCBI
|
12
|
Asiaf A, Ahmad ST, Mohammad SO and Zargar
MA: Review of the current knowledge on the epidemiology,
pathogenesis and prevention of human papillomavirus infection. Eur
J Cancer Prev. 23:206–224. 2014. View Article : Google Scholar : PubMed/NCBI
|
13
|
Venuti A, Paolini F, Nasir L, et al:
Papillomavirus E5: the smallest oncoprotein with many functions.
Mol Cancer. 10:1402011. View Article : Google Scholar : PubMed/NCBI
|
14
|
Campo MS, Graham SV, Cortese MS, et al:
HPV-16 E5 down-regulates expression of surface HLA class I and
reduces recognition by CD8 T cells. Virology. 407:137–142. 2010.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Faridi R, Zahra A, Khan K and Idrees M:
Oncogenic potential of human papillomavirus (HPV) and its relation
with cervical cancer. Virol J. 8:2692011. View Article : Google Scholar : PubMed/NCBI
|
16
|
Zuna RE, Allen RA, Moore WE, Mattu R and
Dunn ST: Comparison of human papillomavirus genotypes in high-grade
squamous intraepithelial lesions and invasive cervical carcinoma:
Evidence for differences in biologic potential of precursor
lesions. Mod Pathol. 17:1314–1322. 2004. View Article : Google Scholar : PubMed/NCBI
|
17
|
Hasan UA, Zannetti C, Parroche P, et al:
The human papillomavirus type 16 E7 oncoprotein induces a
transcriptional repressor complex on the Toll-like receptor 9
promoter. J Exp Med. 210:1369–1387. 2013. View Article : Google Scholar : PubMed/NCBI
|
18
|
Kim H, Kwon B and Sin JI: Combined
stimulation of IL-2 and 4-1BB receptors augments the antitumor
activity of E7 DNA vaccines by increasing Ag-specific CTL
responses. PLoS One. 8:e837652013. View Article : Google Scholar : PubMed/NCBI
|
19
|
Bedoya AM, Jaramillo R, Baena A, et al:
Location and density of immune cells in precursor lesions and
cervical cancer. Cancer Microenviron. Jan 31–2012.(Epub ahead of
print). PubMed/NCBI
|
20
|
Stanley MA and Sterling JC: Host responses
to infection with human papillomavirus. Curr Probl Dermatol.
45:58–74. 2014. View Article : Google Scholar : PubMed/NCBI
|
21
|
Crosbie EJ, Einstein MH, Franceschi S and
Kitchener HC: Human papillomavirus and cervical cancer. Lancet.
382:889–899. 2013.PubMed/NCBI
|
22
|
Piersma SJ: Immunosuppressive tumor
microenvironment in cervical cancer patients. Cancer Microenviron.
4:361–375. 2011. View Article : Google Scholar : PubMed/NCBI
|
23
|
Alves DB, Tozetti IA, Gatto FA, et al: CD4
and CD8 T lymphocytes and NK cells in the stroma of the uterine
cervix of women infected with human papillomavirus. Rev Soc Bras
Med Trop. 43:425–429. 2010. View Article : Google Scholar : PubMed/NCBI
|
24
|
Feller L, Wood NH, Khammissa RA, et al:
HPV modulation of host immune responses. SADJ. 65:266–268.
2010.PubMed/NCBI
|
25
|
Le Borgne M, Etchart N, Goubier A, et al:
Dendritic cells rapidly recruited into epithelial tissues via
CCR6/CCL20 are responsible for CD8+ T cell cross priming
in vivo. Immunity. 24:191–201. 2006. View Article : Google Scholar : PubMed/NCBI
|
26
|
Hasan U: Human papillomavirus (HPV)
deregulation of Toll-like receptor 9. Oncoimmunology. 3:e272572014.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Zhang Y, Yang H, Barnie PA, et al: The
expression of Toll-like receptor 8 and its relationship with VEGF
and Bcl-2 in cervical cancer. Int J Med Sci. 11:608–613. 2014.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Wang Y, Weng Y, Shi Y, et al: Expression
and Functional Analysis of Toll-like Receptor 4 in Human Cervical
Carcinoma. J Membr Biol. 247:591–599. 2014. View Article : Google Scholar : PubMed/NCBI
|
29
|
Hammes LS, Tekmal RR, Naud P, Edelweiss
MI, et al: Macrophages, inflammation and risk of cervical
intraepithelial neoplasia (CIN) progression-clinicopathological
correlation. Gynecologic Oncology. 105:157–165. 2007. View Article : Google Scholar : PubMed/NCBI
|
30
|
Lepique AP, Daghastanli KR, Cuccovia IM
and Villa LL: HPV16 tumor associated macrophages suppress antitumor
T cell responses. Clinical Cancer Research. 15:4391–4400. 2009.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Garcia-Iglesias T, Del Toro-Arreola A,
Albarran-Somoza B, et al: Low NKp30, NKp46 and NKG2D expression and
reduced cytotoxic activity on NK cells in cervical cancer and
precursor lesions. BMC Cancer. 9:1862009. View Article : Google Scholar : PubMed/NCBI
|
32
|
Jimenez-Perez MI, Jave-Suarez LF,
Ortiz-Lazareno PC, et al: Cervical cancer cell lines expressing
NKG2D-ligands are able to down-modulate the NKG2D receptor on NKL
cells with functional implications. BMC Immunol. 13:72012.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Kobayashi A, Weinberg V, Darragh T and
Smith-McCune K: Evolving immunosuppressive microenvironment during
human cervical carcinogenesis. Mucosal Immunol. 1:412–420. 2008.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Bais AG, Beckmann I, Lindemans J, et al: A
shift to a peripheral Th2-type cytokine pattern during the
carcinogenesis of cervical cancer becomes manifest in CIN/III
lesions. J Clin Pathol. 58:1096–1100. 2005. View Article : Google Scholar : PubMed/NCBI
|
35
|
Scott ME, Shvetsov YB, Thompson PJ, et al:
Cervical cytokines and clearance of incident human papillomavirus
infection: Hawaii HPV cohort study. Int J Cancer. 133:1187–1196.
2013. View Article : Google Scholar : PubMed/NCBI
|
36
|
Peghini BC, Abdalla DR, Barcelos AC,
Teodoro L, Murta EF and Michelin MA: Local cytokine profiles of
patients with cervical intraepithelial and invasive neoplasia. Hum
Immunol. 73:920–926. 2012. View Article : Google Scholar : PubMed/NCBI
|
37
|
Lee YS, Lee CW, Song MJ, et al:
Cell-mediated immune response to human papillomavirus 16 E7 peptide
pools in patients with cervical neoplasia. Acta Obstet Gynecol
Scand. 90:1350–1356. 2011. View Article : Google Scholar : PubMed/NCBI
|
38
|
Sheu BC, Chang WC, Lin HH, Chow SN and
Huang SC: Immune concept of human papillomaviruses and related
antigens in local cancer milieu of human cervical neoplasia. J
Obstet Gynaecol Res. 33:103–113. 2007. View Article : Google Scholar : PubMed/NCBI
|
39
|
Iijima N, Goodwin EC, Dimaio D and Iwasaki
A: High-risk human papillomavirus E6 inhibits monocyte
differentiation to Langerhans cells. Virology. 444:257–262. 2013.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Strickler HD, Martinson J, Desai S, et al:
The relation of plasmacytoid dendritic cells (pDCs) and regulatory
T-cells (Tregs) with HPV persistence in HIV-infected and
HIV-uninfected women. Viral Immunol. 27:20–25. 2014. View Article : Google Scholar : PubMed/NCBI
|
41
|
Yang W, Song Y, Lu YL, Sun JZ and Wang HW:
Increased expression of programmed death (PD)-1 and its ligand
PD-L1 correlates with impaired cell-mediated immunity in high-risk
human papillomavirus-related cervical intraepithelial neoplasia.
Immunology. 139:513–522. 2013. View Article : Google Scholar : PubMed/NCBI
|
42
|
Adurthi S, Krishna S, Mukherjee G, et al:
Regulatory T cells in a spectrum of HPV-induced cervical lesions:
Cervicitis, cervical intraepithelial neoplasia andsquamous cell
carcinoma. Am J Reprod Immunol. 60:55–65. 2008. View Article : Google Scholar : PubMed/NCBI
|
43
|
de Vos van Steenwijk PJ, Piersma SJ,
Welters MJ, et al: Surgery followed by persistence of high-grade
squamous intraepithelial lesions is associated with the induction
of a dysfunctional HPV16-specific T-cell response. Clin Cancer Res.
14:7188–7195. 2008. View Article : Google Scholar : PubMed/NCBI
|
44
|
Ali KS, Ali HY and Jubrael JM:
Concentration levels of IL-10 and TNF α cytokines in patients with
human papilloma virus (HPV) DNA+ and DNA-cervical
lesions. J Immunotoxicol. 9:168–172. 2012. View Article : Google Scholar : PubMed/NCBI
|
45
|
Bermudez-Morales VH, Gutierrez LX,
Alcocer-Gonzalez JM, Burguete A and Madrid-Marina V: Correlation
between IL-10 gene expression and HPV infection in cervical cancer:
a mechanism for immune response escape. Cancer Invest.
26:1037–1043. 2008. View Article : Google Scholar : PubMed/NCBI
|
46
|
Bolpetti A, Silva JS, Villa LL and Lepique
AP: Interleukin-10 production by tumor infiltrating macrophages
plays a role in Human Papillomavirus 16 tumor growth. BMC Immunol.
11:272010. View Article : Google Scholar : PubMed/NCBI
|
47
|
Bermudez-Morales VH, Peralta-Zaragoza O,
Alcocer Gonzalez JM, Moreno J and Madrid-Marina V: IL-10 expression
is regulated by HPV E2 protein in cervical cancer cells. Mol Med
Rep. 4:369–375. 2011.PubMed/NCBI
|
48
|
Koshiol J, Sklavos M, Wentzensen N, et al:
Evaluation of a multiplex panel of immune-related markers in
cervical secretions: a methodologic study. Int J Cancer.
134:411–425. 2014. View Article : Google Scholar : PubMed/NCBI
|
49
|
Zeng C, Yao Y, Jie W, et al: Up-regulation
of Foxp3 participates in progression of cervical cancer. Cancer
Immunol Immunother. 62:481–487. 2013. View Article : Google Scholar : PubMed/NCBI
|
50
|
Sheng X, Du X, Zhang X, et al: Clinical
value of serum HMGB1 levels in early detection of recurrent
squamous cell carcinoma of uterine cervix: Comparison with serum
SCCA, CYFRA21-1 and CEA levels. Croat Med J. 50:455–464. 2009.
View Article : Google Scholar : PubMed/NCBI
|
51
|
Huang LF, Yao YM, Zhang LT, Dong N, Yu Y
and Sheng ZY: The effect of high-mobility group box 1 protein on
activity of regulatory T cells after thermal injury in rats. Shock.
31:322–329. 2009. View Article : Google Scholar : PubMed/NCBI
|
52
|
Pang X, Zhang Y, Wei H, et al: Expression
and effects of high-mobility group box 1 in cervical cancer. Int J
Mol Sci. 15:8699–8712. 2014. View Article : Google Scholar : PubMed/NCBI
|
53
|
Halloush RA, Akpolat I, Jim Zhai Q,
Schwartz MR and Mody DR: Comparison of ProEx C with p16INK4a and
Ki-67 immunohistochemical staining of cell blocks prepared from
residual liquid-based cervicovaginal material: A pilot study.
Cancer. 114:474–480. 2008. View Article : Google Scholar : PubMed/NCBI
|
54
|
Izadi-Mood N, Sarmadi S, Eftekhar Z,
Jahanteegh HA and Sanii S: Immunohistochemical expression of p16
and HPV L1 capsid proteins as predictive markers in cervical
lesions. Arch Gynecol Obstet. 289:1287–1292. 2014. View Article : Google Scholar : PubMed/NCBI
|
55
|
Lee SJ, Lee AW, Kang CS, et al:
Clinicopathological implications of human papilloma virus (HPV) L1
capsid protein immunoreactivity in HPV16-positive cervical
cytology. Int J Med Sci. 11:80–86. 2013. View Article : Google Scholar : PubMed/NCBI
|
56
|
Pinto LA, Edwards J, Castle PE, et al:
Cellular immune responses to human papillomavirus (HPV)-16 L1 in
healthy volunteers immunized with recombinant HPV-16 L1 virus-like
particles. J Infect Dis. 188:327–338. 2003. View Article : Google Scholar : PubMed/NCBI
|
57
|
Chen Z, Kamath P, Zhang S, St John L,
Adler-Storthz K and Shillitoe EJ: Effects on tumor cells of
ribozymes that cleave the RNA transcripts of human papillomavirus
type 18. Cancer Gene Ther. 3:18–23. 1996.PubMed/NCBI
|
58
|
Knoff J, Yang B, Hung CF and Wu TC:
Cervical cancer: development of targeted therapies beyond molecular
pathogenesis. Curr Obstet Gynecol Rep. 3:18–32. 2014. View Article : Google Scholar : PubMed/NCBI
|
59
|
Souders NC, Sewell DA, Pan ZK, et al:
Listeria-based vaccines can overcome tolerance by expanding low
avidity CD8+ T cells capable of eradicating a solid
tumor in a transgenic mouse model of cancer. Cancer Immu.
7:22007.
|
60
|
Zhou CM, Zhang GX and Ma XX:
Characterization and evaluation of the immune responses elicited by
a novel human papillomavirus (HPV) therapeutic vaccine: HPV
16E7-HBcAg-Hsp65 fusion protein. J Virol Methods. 197:1–6. 2014.
View Article : Google Scholar : PubMed/NCBI
|
61
|
Davidson EJ, Boswell CM, Sehr P, et al:
Immunological and clinical responses in women with vulval
intraepithelial neoplasia vaccinated with a vaccinia virus encoding
human papillomavirus 16/18 oncoproteins. Cancer Res. 63:6032–6041.
2003.PubMed/NCBI
|
62
|
Mizuuchi M, Hirohashi Y, Torigoe T, et al:
Novel oligomannose liposome-DNA complex DNA vaccination efficiently
evokes anti-HPV E6 and E7 CTL responses. Exp Mol Pathol.
92:185–190. 2012. View Article : Google Scholar : PubMed/NCBI
|
63
|
Wang YT, Li W, Liu Q, Guan X and Hu J:
Dendritic cells treated with HPV16mE7 in a three-dimensional model
promote the secretion of IL-12p70 and IFN-γ. Exp Mol Pathol.
91:325–330. 2011. View Article : Google Scholar : PubMed/NCBI
|
64
|
Wang HL, Xu H, Lu WH, Zhu L, Yu YH and
Hong FZ: In vitro and in vivo evaluations of human
papillomavirus type 16 (HPV16)-derived peptide-loaded dendritic
cells (DCs) with a CpG oligodeoxynucleotide (CpG-ODN) adjuvant as
tumor vaccines for immunotherapy of cervical cancer. Arch Gynecol
Obstet. 289:155–162. 2014. View Article : Google Scholar : PubMed/NCBI
|
65
|
Wu XM, Liu X, Jiao QF, et al: Cytotoxic T
Lymphocytes elicited by dendritic cell-targeted delivery of human
papillomavirus Type-16 E6/E7 fusion gene exert lethal
effects on CaSki cells. Asian Pac J Cancer Prev. 15:2447–2451.
2014. View Article : Google Scholar : PubMed/NCBI
|