1
|
Pawelek JM, Low KB and Bermudes D:
Bacteria as tumour-targeting vectors. Lancet Oncol. 4:548–556.
2003. View Article : Google Scholar : PubMed/NCBI
|
2
|
Yazawa K, Fujimori M, Amano J, Kano Y and
Taniguchi S: Bifidobacterium longum as a delivery system for
cancer gene therapy: selective localization and growth in hypoxic
tumors. Cancer Gene Ther. 7:269–274. 2000. View Article : Google Scholar : PubMed/NCBI
|
3
|
Yazawa K, Fujimori M and Nakamura T:
Bifidobacterium longum as a delivery system for gene therapy
of chemically induced rat mammary tumors. Breast Cancer Res Treat.
66:165–170. 2001. View Article : Google Scholar : PubMed/NCBI
|
4
|
Taniguchi S, Fujimori M, Sasaki T, Tsutsui
H, Shimatani Y, Seki K and Amano J: Targeting solid tumors with
non-pathogenic obligate anaerobic bacteria. Cancer Sci.
101:1925–1932. 2010. View Article : Google Scholar : PubMed/NCBI
|
5
|
Theys J, Dubois L, Anlezark G, et al:
Repeated cycles of Clostridium-directed enzyme prodrug therapy
result in sustained antitumour effects in vivo. Br J Cancer.
95:1212–1219. 2006. View Article : Google Scholar : PubMed/NCBI
|
6
|
Liu SC, Ahn GO, Kioi M, Dorie MJ,
Patterson AV and Brown JM: Optimized clostridium-directed enzyme
prodrug therapy improves the antitumor activity of the novel DNA
cross-linking agent PR-104. Cancer Res. 68:7995–8003. 2008.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Low KB, Ittensohn M, Le T, et al: Lipid A
mutant Salmonella with suppressed virulence and TNFalpha
induction retain tumor-targeting in vivo. Nat Biotechnol. 17:37–41.
1999. View Article : Google Scholar : PubMed/NCBI
|
8
|
Zhao M, Yang M, Li XM, et al:
Tumor-targeting bacterial therapy with amino acid auxotrophs of
GFP-expressing Salmonella typhimurium. Proc Natl Acad Sci
USA. 102:755–760. 2005. View Article : Google Scholar : PubMed/NCBI
|
9
|
Zhao M, Yang M, Ma H, et al: Targeted
therapy with a Salmonella typhimurium leucine-arginine
auxotroph cures orthotopic human breast tumors in nude mice. Cancer
Res. 66:7647–7652. 2006. View Article : Google Scholar : PubMed/NCBI
|
10
|
Yu B, Yang M, Shi L, et al: Explicit
hypoxia targeting with tumor suppression by creating an ‘obligate’
anaerobic Salmonella typhimurium strain. Sci Rep. 2:4362012.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Bertout JA, Patel SA and Simon MC: The
impact of O2 availability on human cancer. Nat Rev
Cancer. 8:967–975. 2008. View
Article : Google Scholar : PubMed/NCBI
|
12
|
Hill RP, Marie-Egyptienne DT and Hedley
DW: Cancer stem cells, hypoxia and metastasis. Semin Radiat Oncol.
19:106–111. 2009. View Article : Google Scholar : PubMed/NCBI
|
13
|
Hoiseth SK and Stocker BA:
Aromatic-dependent Salmonella typhimurium are non-virulent
and effective as live vaccines. Nature. 291:238–239. 1981.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Animal Research Advisory Committee, .
Guidelines for Endpoints in Animal Study Proposals. http://oacu.od.nih.gov/ARAC/documents/ASP_Endpoints.pdfAccessed.
February 1–2014
|
15
|
Chen G, Wei DP, Jia LJ, et al: Oral
delivery of tumor-targeting Salmonella exhibits promising
therapeutic efficacy and low toxicity. Cancer Sci. 100:2437–2443.
2009. View Article : Google Scholar : PubMed/NCBI
|
16
|
Liao D, Corle C, Seagroves TN and Johnson
RS: Hypoxia-inducible factor-1alpha is a key regulator of
metastasis in a transgenic model of cancer initiation and
progression. Cancer Res. 67:563–572. 2007. View Article : Google Scholar : PubMed/NCBI
|
17
|
Vaupel P: Tumor microenvironmental
physiology and its implications for radiation oncology. Semin
Radiat Oncol. 14:198–206. 2004. View Article : Google Scholar : PubMed/NCBI
|
18
|
Brown J and Wilson W: Exploiting tumour
hypoxia in cancer treatment. Nat Rev Cancer. 4:437–447. 2004.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Movsas B, Chapman JD, Hanlon AL, et al:
Hypoxia in human prostate carcinoma: an Eppendorf PO2 study. Am J
Clin Oncol. 24:458–461. 2001. View Article : Google Scholar : PubMed/NCBI
|
20
|
Maxwell PH, Pugh CW and Ratcliffe PJ:
Activation of the HIF pathway in cancer. Curr Opin Genet Dev.
11:293–299. 2001. View Article : Google Scholar : PubMed/NCBI
|
21
|
Brown JM and Giaccia AJ: The unique
physiology of solid tumors: opportunities (and problems) for cancer
therapy. Cancer Res. 58:1408–1416. 1998.PubMed/NCBI
|
22
|
Brown JM and Wilson WR: Exploiting tumour
hypoxia in cancer treatment. Nat Rev Cancer. 4:437–447. 2004.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Jain RK and Forbes NS: Can engineered
bacteria help control cancer? Proc Natl Acad Sci USA.
98:14748–14750. 2001. View Article : Google Scholar : PubMed/NCBI
|
24
|
Chen J, Yang B, Cheng X, et al:
Salmonella-mediated tumor-targeting TRAIL gene therapy
significantly suppresses melanoma growth in mouse model. Cancer
Sci. 103:325–333. 2012. View Article : Google Scholar : PubMed/NCBI
|
25
|
Pawelek JM, Low KB and Bermudes D:
Tumor-targeted Salmonella as a novel anticancer vector. Cancer Res.
57:4537–4544. 1997.PubMed/NCBI
|
26
|
Rosenberg SA, Speiss PJ and Kleiner DE:
Antitumor effects in mice of the intravenous injection of
attenuated Salmonella typhimurium. J Immunother. 25:218–225.
2002. View Article : Google Scholar : PubMed/NCBI
|
27
|
Segre JA, Nemhauser JL, Taylor BA, et al:
Positional cloning of the nude locus: genetic, physical, and
transcription maps of the region and mutations in the mouse and
rat. Genomics. 28:549–559. 1995. View Article : Google Scholar : PubMed/NCBI
|
28
|
Avogadri F, Martinoli C, Petrovska L, et
al: Cancer immunotherapy based on killing of
Salmonella-infected tumor cells. Cancer Res. 65:3920–3927.
2005. View Article : Google Scholar : PubMed/NCBI
|
29
|
Marincola FM, Wang E, Herlyn M, Seliger B
and Ferrone S: Tumors as elusive targets of T-cell-based active
immunotherapy. Trends Immunol. 24:335–342. 2003. View Article : Google Scholar : PubMed/NCBI
|
30
|
Cerundolo V, Hermans IF and Salio M:
Dendritic cells: a journey from laboratory to clinic. Nat Immunol.
5:7–10. 2004. View Article : Google Scholar : PubMed/NCBI
|
31
|
Finn OJ: Cancer vaccines: between the idea
and the reality. Nat Rev Immunol. 3:630–641. 2003. View Article : Google Scholar : PubMed/NCBI
|
32
|
Iida N, Dzutsev A, Stewart CA, et al:
Commensal bacteria control cancer response to therapy by modulating
the tumor microenvironment. Science. 342:967–970. 2013. View Article : Google Scholar : PubMed/NCBI
|
33
|
Lee PP, Yee C, Savage PA, Fong L,
Brockstedt D, et al: Characterization of circulating T cells
specific for tumor-associated antigens in melanoma patients. Nat
Med. 5:677–685. 1999. View
Article : Google Scholar : PubMed/NCBI
|
34
|
Garcia-Lora A, Algarra I and Garrido F:
MHC class I antigens, immune surveillance, and tumor immune escape.
J Cell Physiol. 195:346–355. 2003. View Article : Google Scholar : PubMed/NCBI
|
35
|
Ribas A, Timmerman JM, Butterfield LH and
Economou JS: Determinant spreading and tumor responses after
peptide-based cancer immunotherapy. Trends Immunol. 58–61. 2003.
View Article : Google Scholar : PubMed/NCBI
|