1
|
Ferlay J, Soerjomataram I, Ervik M,
Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D and
Bray F: GLOBOCAN 2012 v1.0. Cancer Incidence and Mortality
Worldwide: IARC CancerBase No. 11 (Internet). International Agency
for Research on Cancer (Lyon, France). 2013.Available from.
http://globocan.iarc.frAccessed.
July 27–2015
|
2
|
Goh KL, Quek KF, Yeo GT, Hilmi IN, Lee CK,
Hasnida N, Aznan M, Kwan KL and Ong KT: Colorectal cancer in
Asians: A demographic and anatomic survey in Malaysian patients
undergoing colonoscopy. Aliment Pharmacol Ther. 22:859–864. 2005.
View Article : Google Scholar : PubMed/NCBI
|
3
|
National Cancer Registry: Malaysia Cancer
Statistics - Data and Figure: Peninsular Malaysia 2006. Kuala
Lumpur: National Cancer Registry, Ministry of Health Malaysia.
2006.
|
4
|
Zahary MN, Kaur G, Hassan MR, Sidek AS,
Singh H, Yeh LY and Ankathil R: Germline mutation and protein
expression analysis of mismatch repair genes MSH6 and PMS2 in
Malaysian Lynch syndrome patients. Int J Colorectal Dis.
29:261–262. 2014. View Article : Google Scholar : PubMed/NCBI
|
5
|
Sherr CJ: Cancer cell cycles. Science.
274:1672–1677. 1996. View Article : Google Scholar : PubMed/NCBI
|
6
|
Donnellan R and Chetty R: Cyclin D1 and
human neoplasia. Mol Pathol. 51:1–7. 1998. View Article : Google Scholar : PubMed/NCBI
|
7
|
Zheng Y, Shen H, Sturgis EM, Wang LE,
Eicher SA, Strom SS, Frazier ML, Spitz MR and Wei Q: Cyclin D1
polymorphism and risk for squamous cell carcinoma of the head and
neck: A case-control study. Carcinogenesis. 22:1195–1199. 2001.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Porter TR, Richards FM, Houlston RS, Evans
DG, Jankowski JA, Macdonald F, Norbury G, Payne SJ, Fisher SA,
Tomlinson I and Maher ER: Contribution of cyclin d1 (CCND1) and
E-cadherin (CDH1) polymorphisms to familial and sporadic colorectal
cancer. Oncogene. 21:1928–1933. 2002. View Article : Google Scholar : PubMed/NCBI
|
9
|
Wang L, Habuchi T, Takahashi T, Mitsumori
K, Kamoto T, Kakehi Y, Kakinuma H, Sato K, Nakamura A, Ogawa O and
Kato T: Cyclin D1 gene polymorphism is associated with an increased
risk of urinary bladder cancer. Carcinogenesis. 23:257–264. 2002.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Wang L, Habuchi T, Mitsumori K, Li Z,
Kamoto T, Kinoshita H, Tsuchiya N, Sato K, Ohyama C, Nakamura A, et
al: Increased risk of prostate cancer associated with AA genotype
of cyclin D1 gene A870G polymorphism. Int J Cancer. 103:116–120.
2003. View Article : Google Scholar : PubMed/NCBI
|
11
|
Lane DP: Cancer. p53, guardian of the
genome. Nature. 358:15–16. 1992. View
Article : Google Scholar : PubMed/NCBI
|
12
|
Levine AJ: p53, the cellular gatekeeper
for growth and division. Cell. 88:323–331. 1997. View Article : Google Scholar : PubMed/NCBI
|
13
|
Sullivan A, Syed N, Gasco M, Bergamaschi
D, Trigiante G, Attard M, Hiller L, Farrell PJ, Smith P, Lu X and
Crook T: Polymorphism in wild-type p53 modulates response to
chemotherapy in vitro and in vivo. Oncogene. 23:3328–3337. 2004.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Hong Y, Eu KW, Seow-Choen F, Fook-Chong S
and Cheah PY: GG genotype of cyclin D1 G870A polymorphism is
associated with increased risk and advanced colorectal cancer in
patients in Singapore. Eur J Cancer. 41:1037–1044. 2005. View Article : Google Scholar : PubMed/NCBI
|
15
|
Cao Z, Song JH, Park YK, Maeng EJ, Nam SW,
Lee JY and Park WS: The p53 codon 72 polymorphism and
susceptibility to colorectal cancer in Korean patients. Neoplasma.
56:114–118. 2009. View Article : Google Scholar : PubMed/NCBI
|
16
|
Umar A, Boland CR, Terdiman JP, Syngal S,
de la Chapelle A, Rüschoff J, Fishel R, Lindor NM, Burgart LJ,
Hamelin R, et al: Revised Bethesda Guidelines for hereditary
nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite
instability. J Natl Cancer Inst. 96:261–268. 2004. View Article : Google Scholar : PubMed/NCBI
|
17
|
Tárraga López PJ, Albero JS and
Rodríguez-Montes JA: Primary and secondary prevention of colorectal
cancer. Clin Med Insights Gastroenterol. 7:33–46. 2014. View Article : Google Scholar : PubMed/NCBI
|
18
|
Marin JJ, de Medina Sanchez F, Castaño B,
Bujanda L, Romero MR, Martinez-Augustin O, Moral-Avila RD and Briz
O: Chemoprevention, chemotherapy and chemoresistance in colorectal
cancer. Drug Metab Rev. 44:148–172. 2012. View Article : Google Scholar : PubMed/NCBI
|
19
|
Sengupta N, Gill KA, MacFie TS, Lai CS,
Suraweera N, Mcdonald S and Silver A: Management of colorectal
cancer: A role for genetics in prevention and treatment? Pathol Res
Pract. 204:469–477. 2008. View Article : Google Scholar : PubMed/NCBI
|
20
|
Gryfe R, Swallow C, Bapat B, Redston M,
Gallinger S and Couture J: Molecular biology of colorectal cancer.
Curr Probl Cancer. 21:233–300. 1997. View Article : Google Scholar : PubMed/NCBI
|
21
|
Bellacosa A: Genetic hits and mutation
rate in colorectal tumorigenesis: Versatility of Knudson's theory
and implications for cancer prevention. Genes Chromosomes Cancer.
38:382–388. 2003. View Article : Google Scholar : PubMed/NCBI
|
22
|
Shtutman M, Zhurinsky J, Simcha I,
Albanese C, D'Amico M, Pestell R and Ben-Ze'ev A: The cyclin D1
gene is a target of the beta-catenin/LEF-1 pathway. Proc Natl Acad
Sci U S A. 96:5522–5527. 1999. View Article : Google Scholar : PubMed/NCBI
|
23
|
Betticher DC, Thatcher N, Altermatt HJ,
Hoban P, Ryder WD and Heighway J: Alternate splicing produces a
novel cyclin D1 transcript. Oncogene. 11:1005–1011. 1995.PubMed/NCBI
|
24
|
Solomon DA, Wang Y, Fox SR, Lambeck TC,
Giesting S, Lan Z, Senderowicz AM, Conti CJ and Knudsen ES: Cyclin
D1 splice variants. Differential effects on localization, RB
phosphorylation and cellular transformation. J Biol Chem.
278:30339–30347. 2003. View Article : Google Scholar : PubMed/NCBI
|
25
|
Sawa H, Ohshima TA, Ukita H, Murakami H,
Chiba Y, Kamada H, Hara M and Saito I: Alternatively spliced forms
of cyclin D1 modulate entry into the cell cycle in an inverse
manner. Oncogene. 16:1701–1712. 1998. View Article : Google Scholar : PubMed/NCBI
|
26
|
Fearon ER and Vogelstein B: A genetic
model for colorectal tumorigenesis. Cell. 61:759–767. 1990.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Whibley C, Pharoah PD and Hollstein M: p53
polymorphisms: Cancer implications. Nat Rev Cancer. 9:95–107. 2009.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Thomas M, Kalita A, Labrecque S, Pim D,
Banks L and Matlashewski G: Two polymorphic variants of wild-type
p53 differ biochemically and biologically. Mol Cell Biol.
19:1092–1100. 1999.PubMed/NCBI
|
29
|
Bergamaschi D, Gasco M, Hiller L, Sullivan
A, Syed N, Trigiante G, Yulug I, Merlano M, Numico G, Comino A, et
al: p53 polymorphism influences response in cancer chemotherapy via
modulation of p73-dependent apoptosis. Cancer Cell. 3:387–402.
2003. View Article : Google Scholar : PubMed/NCBI
|
30
|
Pim D and Banks L: p53 polymorphic
variants at codon 72 exert different effects on cell cycle
progression. Int J Cancer. 108:196–199. 2004. View Article : Google Scholar : PubMed/NCBI
|
31
|
Marin MC, Jost CA, Brooks LA, Irwin MS,
O'Nions J, Tidy JA, James N, McGregor JM, Harwood CA, Yulug IG, et
al: A common polymorphism acts as an intragenic modifier of mutant
p53 behaviour. Nat Genet. 25:47–54. 2000. View Article : Google Scholar : PubMed/NCBI
|
32
|
Zhang LQ, Wang J, Shang JQ, Bai JL, Liu
FY, Guan X and Zhou JN: Cyclin D1 G870A polymorphism and colorectal
cancer susceptibility: A meta-analysis of 20 populations. Int J
Colorectal Dis. 26:1249–1255. 2011. View Article : Google Scholar : PubMed/NCBI
|
33
|
Yang Y, Wang F, Shi C, Zou Y, Qin H and Ma
Y: Cyclin D1 G870A polymorphism contributes to colorectal cancer
susceptibility: Evidence from a sytematic review of 22 case-control
studies. PLoS One. 7:e368132012. View Article : Google Scholar : PubMed/NCBI
|
34
|
Sameer AS, Parray FQ, Dar MA, Nissar S,
Banday MZ, Rasool S, Gulzar GM, Chowdri NA and Siddiqi MA: Cyclin
D1 G870A polymorphism and risk of colorectal cancer: A case control
study. Mol Med Rep. 7:811–815. 2013.PubMed/NCBI
|
35
|
Jiang J, Wang J, Suzuki S, Gajalakshmi V,
Kuriki K, Zhao Y, Nakamura S, Akasaka S, Ishikawa H and Tokudome S:
Elevated risk of colorectal cancer associated with the AA genotype
of the cyclin D1 A870G polymorphism in an Indian population. J
Cancer Res Clin Oncol. 132:193–199. 2006. View Article : Google Scholar : PubMed/NCBI
|
36
|
Sameer AS, Shah ZA, Syeed N, Banday MZ,
Bashir SM, Bhat BA and Siddiqi MA: TP53 Pro47Ser and Arg72Pro
polymorphisms and colorectal cancer predisposition in an ethnic
Kashmiri population. Genet Mol Res. 9:651–660. 2010. View Article : Google Scholar : PubMed/NCBI
|
37
|
Joshi AM, Budhathoki S, Ohnaka K, Mibu R,
Tanaka M, Kakeji Y, Maehara Y, Okamura T, Ikejiri K, Futami K, et
al: TP53 R72P and MDM2 SNP309 polymorphisms and colorectal cancer
risk: The Fukuoka Colorectal Cancer Study. Jpn J Clin Oncol.
41:232–238. 2011. View Article : Google Scholar : PubMed/NCBI
|
38
|
Song HR, Kweon SS, Kim HN, Piao JM, Yun
WJ, Choi JS, Hwang JE, Yoon JY, Kim HR, Park YK, et al: p53 codon
72 polymorphism in patients with gastric and colorectal cancer in a
Korean population. Gastric Cancer. 14:242–248. 2011. View Article : Google Scholar : PubMed/NCBI
|
39
|
Zhang Y, Liu L, Tang Y, et al:
Polymorphisms in TP53 and MDM2 contribute to higher risk of
colorectal cancer in Chinese population: A hospital-based, case
control study. Mol Biol Rep. 39:9661–9668. 2012. View Article : Google Scholar : PubMed/NCBI
|
40
|
Aizat AA, Shahpudin SN, Mustapha MA, et
al: Association of Arg72Pro of P53 polymorphism with colorectal
cancer susceptibility risk in Malaysian population. Asian Paci J
Cancer Prev. 12:2909–2913. 2011.
|
41
|
Economopoulos KP, Sergentanis TN, Zagouri
F and Zografos GC: Association between p53 Arg72Pro polymorphism
and colorectal cancer risk: A meta-analysis. Onkologie. 33:666–674.
2010. View Article : Google Scholar : PubMed/NCBI
|
42
|
Dahabreh IJ, Linardou H, Bouzika P,
Varvarigou V and Murray S: TP53 Arg72Pro polymorphism and
colorectal cancer risk: A systematic review and meta-analysis.
Cancer Epidemiol Biomarkers Prev. 19:1840–1847. 2010. View Article : Google Scholar : PubMed/NCBI
|
43
|
Oh J, Kim JW, Lee BE, Jang MJ, Chong SY,
Park PW, Hwang SG, Oh D and Kim NK: Polymorphisms of the
pri-miR-34b/c promoter and TP53 codon 72 are associated with risk
of colorectal cancer. Oncol Rep. 31:995–1002. 2014.PubMed/NCBI
|
44
|
Chen J, Etzel CJ, Amos CI, Zhang Q,
Viscofsky N, Lindor NM, Lynch PM and Frazier ML: Genetic variant in
the cell cycle control pathways contribute to early onset
colorectal cancer in Lynch syndrome. Cancer Causes Control.
20:1769–1777. 2009. View Article : Google Scholar : PubMed/NCBI
|
45
|
Krüger S, Bier A, Engel C, Mangold E,
Pagenstecher C, von Knebel Doeberitz M, Holinski-Feder E, Moeslein
G, Schulmann K, Plaschke J, et al: The p53 codon 72 variation is
associated with the age of onset of hereditary non-polyposis
colorectal cancer (HNPCC). J Med Genet. 42:769–773. 2005.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Sotamaa K, Liyanarachchi S, Mecklin JP,
Järvinen H, Aaltonen LA, Peltomäki P and de la Chapelle A: p53
codon 72 and MDM2 SNP309 polymorphisms and age of colorectal cancer
onset in Lynch syndrome. Clin Cancer Res. 11:6840–6844. 2005.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Krüger S, Engel C, Bier A, Mangold E,
Pagenstecher C, Doeberitz MV, Holinski-Feder E, Moeslein G, Keller
G, Kunstmann E, et al: Absence of association between cyclin D1
(CCND1) G870A polymorphism and age of onset in hereditary
nonpolyposis colorectal cancer. Cancer Lett. 236:191–197. 2006.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Talseth BA, Meldrum C, Suchy J, Kurzawski
G, Lubinski J and Scott RJ: MDM2 SNP309 T>G alone or in
combination with the TP53 R72P polymorphism does not appear to
influence disease expression and age of diagnosis of colorectal
cancer in HNPCC patients. Int J Cancer. 120:563–565. 2007.
View Article : Google Scholar : PubMed/NCBI
|