1
|
Bartel DP: MicroRNAs: Genomics biogenesis,
mechanism, and function. Cell. 116:281–297. 2004. View Article : Google Scholar : PubMed/NCBI
|
2
|
Gangaraju VK and Lin H: MicroRNAs: Key
regulators of stem cells. Nat Rev Mol Cell Biol. 10:116–125. 2009.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Liu C, Kelnar K, Liu B, Chen X,
Calhoun-Davis T, Li H, Patrawala L, Yan H, Jeter C, Honorio S, et
al: The microRNA miR-34a inhibits prostate cancer stem cells and
metastasis by directly repressing CD44. Nat Med. 17:211–215. 2011.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Samaraweera L, Grandinetti KB, Huang R,
Spengler BA and Ross RA: MicroRNAs define distinct human
neuroblastoma cell phenotypes and regulate their differentiation
and tumorigenicity. BMC Cancer. 14:3092014. View Article : Google Scholar : PubMed/NCBI
|
5
|
Bao B, Ali S, Ahmad A, Li Y, Banerjee S,
Kong D, Aboukameel A, Mohammad R, Van Buren E, Azmi AS and Sarkar
FH: Differentially expressed miRNAs in cancer-stem-like cells,
Markers for tumor cell aggressiveness of pancreatic cancer. Stem
Cells Dev. 23:1947–1958. 2014. View Article : Google Scholar : PubMed/NCBI
|
6
|
Zhu X, Lin Z, Du J, Zhou X, Yang L and Liu
G: Studies on microRNAs that are correlated with the cancer stem
cells in chronic myeloid leukemia. Mol Cell Biochem. 390:75–84.
2014. View Article : Google Scholar : PubMed/NCBI
|
7
|
Feng Z, Takahashi R, Nakamura T, Sato D,
Shirasawa N, Nakayama A, Kurashige S, Kosawada T, Kitajima T and
Umezu M: Expression of microRNA-1, microRNA-133a and Hand2 protein
in cultured embryonic rat cardiomyocytes. In Vitro Cell Dev
Biol Anim. 50:700–706. 2014. View Article : Google Scholar : PubMed/NCBI
|
8
|
Reinhart BJ, Slack FJ, Basson M,
Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR and Ruvkun G:
The 21-nucleotide let-7 RNA regulates developmental timing in
Caenorhabditis elegans. Nature. 403:901–906. 2000.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Thornton JE and Gregory RI: How does Lin28
let-7 control development and disease? Trends Cell Biol.
22:474–482. 2012. View Article : Google Scholar : PubMed/NCBI
|
10
|
Ruby JG, Jan C, Player C, Axtell MJ, Lee
W, Nusbaum C, Ge H and Bartel DP: Large-scale sequencing reveals
21U-RNAs and additional microRNAs and endogenous siRNAs in C.
elegans. Cell. 127:1193–1207. 2006. View Article : Google Scholar : PubMed/NCBI
|
11
|
Ambros V: MicroRNAs and developmental
timing. Curr Opin Genet Dev. 21:511–517. 2011. View Article : Google Scholar : PubMed/NCBI
|
12
|
Abrahante JE, Daul AL, Li M, Volk ML,
Tennessen JM, Miller EA and Rougvie AE: The Caenorhabditis
elegans hunchback-like gene lin-57/hbl-1 controls developmental
time and is regulated by microRNAs. Dev Cell. 4:625–637. 2003.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Lin SY, Johnson SM, Abraham M, Vella MC,
Pasquinelli A, Gamberi C, Gottlieb E and Slack FJ: The C
elegans hunchback homolog, hbl-1, controls temporal patterning
and is a probable microRNA target. Dev Cell. 4:639–650. 2003.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Zhao C, Sun G, Li S, Lang MF, Yang S, Li W
and Shi Y: MicroRNA let-7b regulates neural stem cell proliferation
and differentiation by targeting nuclear receptor TLX signaling.
Proc Natl Acad Sci USA. 107:1876–1881. 2010. View Article : Google Scholar : PubMed/NCBI
|
15
|
Zou Y, Chiu H, Zinovyeva A, Ambros V,
Chuang CF and Chang C: Developmental decline in neuronal
regeneration by the progressive change of two intrinsic timers.
Science. 340:372–376. 2013. View Article : Google Scholar : PubMed/NCBI
|
16
|
Boyerinas B, Park SM, Hau A, Murmann AE
and Peter ME: The role of let-7 in cell differentiation and cancer.
Endocr Relat Cancer. 17:F19–F36. 2010. View Article : Google Scholar : PubMed/NCBI
|
17
|
Liu C, Kelnar K, Vlassov AV, Brown D, Wang
J and Tang DG: Distinct microRNA expression profiles in prostate
cancer stem/progenitor cells and tumor-suppressive functions of
let-7. Cancer Res. 72:3393–3404. 2012. View Article : Google Scholar : PubMed/NCBI
|
18
|
Kim NH, Kim HS, Li XY, Lee I, Choi HS,
Kang SE, Cha SY, Ryu JK, Yoon D, Fearon ER, et al: A p53/miRNA-34
axis regulates Snail1-dependent cancer cell epithelial-mesenchymal
transition. J Cell Biol. 195:417–433. 2011. View Article : Google Scholar : PubMed/NCBI
|
19
|
Cha YH, Kim NH, Park C, Lee I, Kim HS and
Yook JI: MiRNA-34 intrinsically links p53 tumor suppressor and Wnt
signaling. Cell Cycle. 11:1273–1281. 2012. View Article : Google Scholar : PubMed/NCBI
|
20
|
Rokavec M, Öner MG, Li H, Jackstadt R,
Jiang L, Lodygin D, Kaller M, Horst D, Ziegler PK, Schwitalla S, et
al: IL-6R/STAT3/miR-34a feedback loop promotes EMT-mediated
colorectal cancer invasion and metastasis. J Clin Invest.
124:1853–1867. 2014. View
Article : Google Scholar : PubMed/NCBI
|
21
|
Wienholds E, Kloosterman WP, Miska E,
Alvarez-Saavedra E, Berezikov E, de Bruijn E, Horvitz HR, Kauppinen
S and Plasterk RH: MicroRNA expression in zebrafish embryonic
development. Science. 309:310–311. 2005. View Article : Google Scholar : PubMed/NCBI
|
22
|
Shao P, Zhou H, Xiao ZD, He JH, Huang MB,
Chen YQ and Qu LH: Identification of novel chicken microRNAs and
analysis of their genomic organization. Gene. 418:34–40. 2008.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Kloosterman WP, Wienholds E, de Bruijn E,
Kauppinen S and Plasterk RH: In situ detection of miRNAs in
animal embryos using LNA-modified oligonucleotide probes. Nat
Methods. 3:27–29. 2006. View
Article : Google Scholar : PubMed/NCBI
|
24
|
Weston MD, Pierce ML, Rocha-Sanchez S,
Beisel KW and Soukup GA: MicroRNA gene expression in the mouse
inner ear. Brain Res. 1111:95–104. 2006. View Article : Google Scholar : PubMed/NCBI
|
25
|
Xu S, Witmer PD, Lumayag S, Kovacs B and
Valle D: MicroRNA (miRNA) transcriptome of mouse retina and
identification of a sensory organ-specific miRNA cluster. J Biol
Chem. 282:25053–25066. 2007. View Article : Google Scholar : PubMed/NCBI
|
26
|
Weston MD, Pierce ML, Jensen-Smith HC,
Fritzsch B, Rocha-Sanchez S, Beisel KW and Soukup GA: MicroRNA-183
family expression in hair cell development and requirement of
microRNAs for hair cell maintenance and survival. Dev Dyn.
240:808–819. 2011. View Article : Google Scholar : PubMed/NCBI
|
27
|
Ueno K, Hirata H, Shahryari V, Deng G,
Tanaka Y, Tabatabai ZL, Hinoda Y and Dahiya R: MicroRNA-183 is an
oncogene targeting Dkk-3 and SMAD4 in prostate cancer. Br J Cancer.
108:1659–1667. 2013. View Article : Google Scholar : PubMed/NCBI
|
28
|
Zhu J, Feng Y, Ke Z, Yang Z, Zhou J, Huang
X and Wang L: Down-regulation of miR-183 promotes migration and
invasion of osteosarcoma by targeting Ezrin. Am J Pathol.
180:2440–2451. 2012. View Article : Google Scholar : PubMed/NCBI
|
29
|
Calin GA, Dumitru CD, Shimizu M, Bichi R,
Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, et al:
Frequent deletions and down-regulation of micro- RNA genes miR15
and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad
Sci USA. 99:15524–15529. 2002. View Article : Google Scholar : PubMed/NCBI
|
30
|
Bottoni A, Piccin D, Tagliati F, Luchin A,
Zatelli MC and Uberti Degli EC: miR-15a and miR-16-1
down-regulation in pituitary adenomas. J Cell Physiol. 204:280–285.
2005. View Article : Google Scholar : PubMed/NCBI
|
31
|
Aqeilan RI, Calin GA and Croce CM: miR-15a
and miR-16-1 in cancer, Discovery, function and future
perspectives. Cell Death Differ. 17:215–220. 2010. View Article : Google Scholar : PubMed/NCBI
|
32
|
Xue G, Yan HL, Zhang Y, Hao LQ, Zhu XT,
Mei Q and Sun SH: c-Myc-mediated repression of miR-15-16 in hypoxia
is induced by increased HIF-2α and promotes tumor angiogenesis and
metastasis by upregulating FGF2. Oncogene. 34:1393–1406. 2015.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Yang F, Miao L, Mei Y and Wu M: Retinoic
acid-induced HOXA5 expression is co-regulated by HuR and miR-130a.
Cell Signal. 25:1476–1485. 2013. View Article : Google Scholar : PubMed/NCBI
|
34
|
Xu N, Shen C, Luo Y, Xia L, Xue F, Xia Q
and Zhang J: Upregulated miR-130a increases drug resistance by
regulating RUNX3 and Wnt signaling in cisplatin-treated HCC cell.
Biochem Biophys Res Commun. 425:468–472. 2012. View Article : Google Scholar : PubMed/NCBI
|
35
|
Larsen MT, Häger M, Glenthøj A, Asmar F,
Clemmensen SN, Mora-Jensen H, Borregaard N and Cowland JB:
miRNA-130a regulates C/EBP-ε expression during granulopoiesis.
Blood. 123:1079–1089. 2014. View Article : Google Scholar : PubMed/NCBI
|
36
|
Wang XC, Tian LL, Wu HL, Jiang XY, Du LQ,
Zhang H, Wang YY, Wu HY, Li DG, She Y, et al: Expression of
miRNA-130a in nonsmall cell lung cancer. Am J Med Sci. 340:385–388.
2010. View Article : Google Scholar : PubMed/NCBI
|
37
|
Qiu S, Lin S, Hu D, Feng Y, Tan Y and Peng
Y: Interactions of miR-323/miR-326/miR-329 and
miR-130a/miR-155/miR-210 as prognostic indicators for clinical
outcome of glioblastoma patients. J Transl Med. 11:102013.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Haghikia A and Hilfiker-Kleiner D:
MiRNA-21: A key to controlling the cardiac fibroblast compartment?
Cardiovasc Res. 82:1–3. 2009. View Article : Google Scholar : PubMed/NCBI
|
39
|
Meng F, Henson R, Wehbe-Janek H, Ghoshal
K, Jacob ST and Patel T: MicroRNA-21 regulates expression of the
PTEN tumor suppressor gene in human hepatocellular cancer.
Gastroenterology. 133:647–658. 2007. View Article : Google Scholar : PubMed/NCBI
|
40
|
Asangani IA, Rasheed SA, Nikolova DA,
Leupold JH, Colburn NH, Post S and Allgayer H: MicroRNA-21 (miR-21)
post-transcriptionally downregulates tumor suppressor Pdcd4 and
stimulates invasion, intravasation and metastasis in colorectal
cancer. Oncogene. 27:2128–2136. 2008. View Article : Google Scholar : PubMed/NCBI
|
41
|
Li L, Zhou L, Li Y, Lin S and Tomuleasa C:
MicroRNA-21 stimulates gastric cancer growth and invasion by
inhibiting the tumor suppressor effects of programmed cell death
protein 4 and phosphatase and tensin homolog. J BUON. 19:228–236.
2014.PubMed/NCBI
|
42
|
Lynch J, Fay J, Meehan M, Bryan K, Watters
KM, Murphy DM and Stallings RL: MiRNA-335 suppresses neuroblastoma
cell invasiveness by direct targeting of multiple genes from the
non-canonical TGF-β signalling pathway. Carcinogenesis. 33:976–985.
2012. View Article : Google Scholar : PubMed/NCBI
|
43
|
Martin NT, Nakamura K, Davies R, Nahas SA,
Brown C, Tunuguntla R, Gatti RA and Hu H: ATM-dependent MiR-335
targets CtIP and modulates the DNA damage response. PLoS Genet.
9:e10035052013. View Article : Google Scholar : PubMed/NCBI
|
44
|
Schoeftner S, Scarola M, Comisso E,
Schneider C and Benetti R: An Oct4-pRb axis, controlled by MiR-335,
integrates stem cell self-renewal and cell cycle control. Stem
Cells. 31:717–728. 2013. View Article : Google Scholar : PubMed/NCBI
|
45
|
Tavazoie SF, Alarcón C, Oskarsson T, Padua
D, Wang Q, Bos PD, Gerald WL and Massagué J: Endogenous human
microRNAs that suppress breast cancer metastasis. Nature.
451:147–152. 2008. View Article : Google Scholar : PubMed/NCBI
|
46
|
Nohata N, Hanazawa T, Enokida H and Seki
N: MicroRNA-1/133a and microRNA-206/133b clusters, Dysregulation
and functional roles in human cancers. Oncotarget. 3:9–21. 2012.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Muraoka N, Yamakawa H, Miyamoto K,
Sadahiro T, Umei T, Isomi M, Nakashima H, Akiyama M, Wada R,
Inagawa K, et al: MiR-133 promotes cardiac reprogramming by
directly repressing Snai1 and silencing fibroblast signatures. EMBO
J. 33:1565–1581. 2014. View Article : Google Scholar : PubMed/NCBI
|
48
|
Atlasi Y, Looijenga L and Fodde R: Cancer
stem cells, pluripotency, and cellular heterogeneity, A WNTer
perspective. Curr Top Dev Biol. 107:373–404. 2014. View Article : Google Scholar : PubMed/NCBI
|
49
|
Zhao JJ and Carrasco RD: Crosstalk between
microRNA30a/b/c/d/e-5p and the canonical Wnt pathway: Implications
for multiple myeloma therapy. Cancer Res. 74:5351–5358. 2014.
View Article : Google Scholar : PubMed/NCBI
|
50
|
Fagotto F: Looking beyond the Wnt pathway
for the deep nature of β-catenin. EMBO Rep. 14:422–433. 2013.
View Article : Google Scholar : PubMed/NCBI
|
51
|
Fazilaty H, Gardaneh M, Bahrami T,
Salmaninejad A and Behnam B: Crosstalk between breast cancer stem
cells and metastatic niche, Emerging molecular metastasis pathway?
Tumour Biol. 34:2019–2030. 2013. View Article : Google Scholar : PubMed/NCBI
|
52
|
Miyazono K: Signal transduction by bone
morphogenetic protein receptors: F unctional roles of Smad
proteins. Bone. 25:91–93. 1999. View Article : Google Scholar : PubMed/NCBI
|
53
|
Shibuya M: VEGFR and type-V RTK activation
and signaling. Cold Spring Harb Perspect Biol. 5:a0090922013.
View Article : Google Scholar : PubMed/NCBI
|
54
|
Wang D, Du L, Liu Q, Liu X and Wang Z:
Receptor tyrosine kinase alterations and therapeutic opportunities
in squamous cell carcinoma of the lung. Cancer Chemother Pharmacol.
72:725–731. 2013. View Article : Google Scholar : PubMed/NCBI
|