Epithelial‑mesenchymal transition in glioblastoma progression (Review)
- Authors:
- Yasuo Iwadate
-
Affiliations: Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba 260‑2870, Japan - Published online on: January 14, 2016 https://doi.org/10.3892/ol.2016.4113
- Pages: 1615-1620
-
Copyright: © Iwadate . This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Kalluri R and Weinberg RA: The basics of epithelial-mesenchymal transition. J Clin Invest. 119:1420–1428. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zeisberg M and Neilson EG: Biomarkers for epithelial-mesenchymal transitions. J Clin Invest. 119:1429–1437. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kahlert UD, Nikkhah G and Maciaczyk J: Epithelial-to-mesenchymal (−like) transition as a relevant molecular event in malignant gliomas. Cancer Lett. 331:131–138. 2013. View Article : Google Scholar : PubMed/NCBI | |
Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, et al: The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 133:704–715. 2008. View Article : Google Scholar : PubMed/NCBI | |
Phillips HS, Kharbanda S, Chen R, Forrest WF, Soriano RH, Wu TD, Misra A, Nigro JM, Colman H, Soroceanu L, et al: Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell. 9:157–173. 2006. View Article : Google Scholar : PubMed/NCBI | |
Verhaak RGW, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, Miller CR, Ding L, Golub T, Mesirov JP, et al: Cancer Genome Atlas Research Network: Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 17:98–110. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zarkoob H, Taube JH, Singh SK, Mani SA and Kohandel M: Investigating the link between molecular subtypes of glioblastoma, epithelial-mesenchymal transition, and CD133 cell surface protein. PLoS One. 8:e641692013. View Article : Google Scholar : PubMed/NCBI | |
Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD and Rich JN: Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 444:756–760. 2006. View Article : Google Scholar : PubMed/NCBI | |
Bhat KPL, Balasubramaniyan V, Vaillant B, Ezhilarasan R, Hummelink K, Hollingsworth F, Wani K, Heathcock L, James JD, Goodman LD, et al: Mesenchymal differentiation mediated by NF-κB promotes radiation resistance in glioblastoma. Cancer Cell. 24:331–346. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Zhang W, Mao XG, Zhen HN, Cao WD and Hu SJ: Targeting role of glioma stem cells for glioblastoma multiforme. Curr Med Chem. 20:1974–1984. 2013. View Article : Google Scholar : PubMed/NCBI | |
Murat A, Migliavacca E, Gorlia T, Lambiv WL, Shay T, Hamou MF, de Tribolet N, Regli L, Wick W, Kouwenhoven MC, et al: Stem cell-related self-renewal signature and high epidermal growth factor receptor expression associated with resistance to concomitant chemoradiotherapy in glioblastoma. J Clin Oncol. 26:3015–3024. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kleihues P and Cavenee WK: Pathology and genetics of tumors of the nervous system. In: World Health Organization Classification of Tumours. Pathology and Genetics of Head and Neck Tumours (Lyon, France). IARC Press. 9–15. 2000. | |
Kahlert UD, Maciaczyk D, Doostkam S, Orr BA, Simons B, Bogiel T, Reithmeier T, Prinz M, Schubert J, Niedermann G, et al: Activation of canonical WNT/β-catenin signaling enhances in vitro motility of glioblastoma cells by activation of ZEB1 and other activators of epithelial-to-mesenchymal transition. Cancer Lett. 325:42–53. 2012. View Article : Google Scholar : PubMed/NCBI | |
Brabletz T: To differentiate or not - routes towards metastasis. Nat Rev Cancer. 12:425–436. 2012. View Article : Google Scholar : PubMed/NCBI | |
Baysan M, Woolard K, Bozdag S, Riddick G, Kotliarova S, Cam MC, Belova GI, Ahn S, Zhang W, Song H, et al: Micro-environment causes reversible changes in DNA methylation and mRNA expression profiles in patient-derived glioma stem cells. PLoS One. 9:e940452014. View Article : Google Scholar : PubMed/NCBI | |
Heddleston JM, Li Z, McLendon RE, Hjelmeland AB and Rich JN: The hypoxic microenvironment maintains glioblastoma stem cells and promotes reprogramming towards a cancer stem cell phenotype. Cell Cycle. 8:3274–3284. 2009. View Article : Google Scholar : PubMed/NCBI | |
Cooper LA, Gutman DA, Chisolm C, Appin C, Kong J, Rong Y, Kurc T, Van Meir EG, Saltz JH, Moreno CS and Brat DJ: The tumor microenvironment strongly impacts master transcriptional regulators and gene expression class of glioblastoma. Am J Pathol. 180:2108–2119. 2012. View Article : Google Scholar : PubMed/NCBI | |
Bar EE, Lin A, Mahairaki V, Matsui W and Eberhart CG: Hypoxia increases the expression of stem-cell markers and promotes clonogenicity in glioblastoma neurospheres. Am J Pathol. 177:1491–1502. 2010. View Article : Google Scholar : PubMed/NCBI | |
Evans SM, Judy KD, Dunphy I, Jenkins WT, Hwang WT, Nelson PT, Lustig RA, Jenkins K, Magarelli DP, Hahn SM, et al: Hypoxia is important in the biology and aggression of human glial brain tumors. Clin Cancer Res. 10:8177–8184. 2004. View Article : Google Scholar : PubMed/NCBI | |
Schonberg DL, Lubelski D, Miller TE and Rich JN: Brain tumor stem cells: Molecular characteristics and their impact on therapy. Mol Aspects Med. 39:82–101. 2014. View Article : Google Scholar : PubMed/NCBI | |
Piao Y, Liang J, Holmes L, Zurita AJ, Henry V, Heymach JV and de Groot JF: Glioblastoma resistance to anti-VEGF therapy is associated with myeloid cell infiltration, stem cell accumulation, and a mesenchymal phenotype. Neuro Oncol. 14:1379–1392. 2012. View Article : Google Scholar : PubMed/NCBI | |
Mahabir R, Tanino M, Elmansuri A, Wang L, Kimura T, Itoh T, Ohba Y, Nishihara H, Shirato H, Tsuda M and Tanaka S: Sustained elevation of Snail promotes glial-mesenchymal transition after irradiation in malignant glioma. Neuro Oncol. 16:671–685. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kim YH, Yoo KC, Cui YH, Uddin N, Lim EJ, Kim MJ, Nam SY, Kim IG, Suh Y and Lee SJ: Radiation promotes malignant progression of glioma cells through HIF-1alpha stabilization. Cancer Lett. 354:132–141. 2014. View Article : Google Scholar : PubMed/NCBI | |
Knecht AK and Bronner-Fraser M: Induction of the neural crest: A multigene process. Nat Rev Genet. 3:453–461. 2002.PubMed/NCBI | |
Zeisberg M, Hanai J, Sugimoto H, Uddin N, Lim EJ, Kim MJ, Nam SY, Kim IG, Suh Y and Lee SJ: BMP-7 counteracts TGF-beta-1-induced epithelial-to mesenchymal transition and reverses chronic renal injury. Nat Med. 9:964–968. 2003. View Article : Google Scholar : PubMed/NCBI | |
Yu Y, Xiao CH, Tan LD, Wang QS, Li XQ and Feng YM: Cancer-associated fibroblasts induce epithelial-mesenchymal transition of breast cancer cells through paracrine TGF-β signaling. Br J Cancer. 110:724–732. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bierie B and Moses HL: Tumour microenvironment: TGFbeta: The molecular Jekyll and Hyde of cancer. Nat Rev Cancer. 6:506–520. 2006. View Article : Google Scholar : PubMed/NCBI | |
Song J: EMT or apoptosis: A decision for TGF-beta. Cell Res. 17:289–290. 2007. View Article : Google Scholar : PubMed/NCBI | |
Bhowmick NA, Zent R, Ghiassi M, McDonnell M and Moses HL: Integrin beta 1 signaling is necessary for transforming growth factor-beta activation of p38MAPK and epithelial plasticity. J Biol Chem. 276:46707–46713. 2001. View Article : Google Scholar : PubMed/NCBI | |
Charles NA, Holland EC, Gilbertson R, Glass R and Kettenmann H: The brain tumor microenvironment. Glia. 59:1169–1180. 2011. View Article : Google Scholar : PubMed/NCBI | |
Dumont N, Wilson MB, Crawford YG, Reynolds PA, Sigaroudinia M and Tlsty TD: Sustained induction of epithelial to mesenchymal transition activates DNA methylation of genes silenced in basal-like breast cancers. Proc Natl Acad Sci USA. 105:14867–14872. 2008. View Article : Google Scholar : PubMed/NCBI | |
Hirohashi S: Inactivation of the E-cadherin-mediated cell adhesion system in human cancers. Am J Pathol. 153:333–339. 1998. View Article : Google Scholar : PubMed/NCBI | |
Birchmeier W and Behrens J: Cadherin expression in carcinomas: Role in the formation of cell junctions and the prevention of invasiveness. Biochim Biophys Acta. 1198:11–26. 1994.PubMed/NCBI | |
Ye XZ, Xu SL, Xin YH, Yu SC, Ping YF, Chen L, Xiao HL, Wang B, Yi L, Wang QL, et al: Tumor-associated microglia/macrophages enhance the invasion of glioma stem-like cells via TGF-β1 signaling pathway. J Immunol. 189:444–453. 2012. View Article : Google Scholar : PubMed/NCBI | |
Jensen RL: Brain tumor hypoxia: Tumorigenesis, angiogenesis, imaging, pseudoprogression, and as a therapeutic target. J Neurooncol. 92:317–335. 2009. View Article : Google Scholar : PubMed/NCBI | |
Iwadate Y, Sakaida T, Hiwasa T, Nagai Y, Ishikura H, Takiguchi M and Yamaura A: Molecular classification and survival prediction in human gliomas based on proteome analysis. Cancer Res. 64:2496–2501. 2004. View Article : Google Scholar : PubMed/NCBI | |
Castanon L and Baylies MK: A Twist in fate: Evolutionary comparison of Twist structure and function. Gene. 287:11–22. 2002. View Article : Google Scholar : PubMed/NCBI | |
Yang MH, Wu MZ, Chiou SH, Chen PM, Chang SY, Liu CJ, Teng SC and Wu KJ: Direct regulation of TWIST by HIF-1alpha promotes metastasis. Nat Cell Biol. 10:295–305. 2008. View Article : Google Scholar : PubMed/NCBI | |
Elias MC, Tozer KR, Silber JR, Mikheeva S, Deng M, Morrison RS, Manning TC, Silbergeld DL, Glackin CA, Reh TA and Rostomily RC: Twist is expressed in human gliomas and promotes invasion. Neoplasia. 7:824–837. 2005. View Article : Google Scholar : PubMed/NCBI | |
Mikheeva SA, Mikheev AM, Petit A, Beyer R, Oxford RG, Khorasani L, Maxwell JP, Glackin CA, Wakimoto H, González-Herrero I, et al: TWIST1 promotes invasion through mesenchymal change in human glioblastoma. Mol Cancer. 9:1942010. View Article : Google Scholar : PubMed/NCBI | |
Nagaishi M, Paulus W, Brokinkel B, Vital A, Tanaka Y, Nakazato Y, Giangaspero F and Ohgaki H: Transcriptional factors for epithelial-mesenchymal transition are associated with mesenchymal differentiation in gliosarcoma. Brain Pathol. 22:670–676. 2012. View Article : Google Scholar : PubMed/NCBI | |
Boutet A, De Frutos CA, Maxwell PH, Mayol MJ, Romero J and Nieto MA: Snail activation disrupts tissue homeostasis and induces fibrosis in the adult kidney. EMBO J. 25:5603–5613. 2006. View Article : Google Scholar : PubMed/NCBI | |
Cheng WY, Kandel JJ, Yamashiro DJ, Canoll P and Anastassiou D: A multi-cancer mesenchymal transition gene expression signature is associated with prolonged time to recurrence in glioblastoma. PLoS One. 7:e347052012. View Article : Google Scholar : PubMed/NCBI | |
Yang HW, Menon LG, Black PM, Carroll RS and Johnson MD: SNAI2/Slug promotes growth and invasion in human gliomas. BMC Cancer. 10:3012010. View Article : Google Scholar : PubMed/NCBI | |
Xie YK, Huo SF, Zhang G, Zhang F, Lian ZP, Tang XL and Jin C: CDA-2 induces cell differentiation through suppressing Twist/SLUG signaling via miR-124 in glioma. J Neurooncol. 110:179–186. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wang Q, Li X, Zhu Y and Yang P: MicroRNA-16 suppresses epithelial-mesenchymal transition-related gene expression in human glioma. Mol Med Rep. 10:3310–3314. 2014.PubMed/NCBI | |
Sánchez-Tilló E, Liu Y, de Barrios O, Siles L, Fanlo L, Cuatrecasas M, Darling DS, Dean DC, Castells A and Postigo A: EMT-activating transcription factors in cancer: Beyond EMT and tumor invasiveness. Cell Mol Life Sci. 69:3429–3456. 2012. View Article : Google Scholar : PubMed/NCBI | |
Qi S, Song Y, Peng Y, Wang H, Long H, Yu X, Li Z, Fang L, Wu A, Luo W, et al: ZEB2 mediates multiple pathways regulating cell proliferation, migration, invasion, and apoptosis in glioma. PLoS One. 7:e388422012. View Article : Google Scholar : PubMed/NCBI | |
Edwards LA, Woolard K, Son MJ, Li A, Lee J, Ene C, Mantey SA, Maric D, Song H, Belova G, et al: Effect of brain- and tumor-derived connective tissue growth factor on glioma invasion. J Natl Cancer Inst. 103:1162–1178. 2011. View Article : Google Scholar : PubMed/NCBI | |
Thiery JP: Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer. 2:442–454. 2002. View Article : Google Scholar : PubMed/NCBI | |
Kim K, Lu Z and Hay ED: Direct evidence for a role of beta-catenin/LEF-1 signaling pathway in induction of EMT. Cell Biol Int. 26:463–476. 2002. View Article : Google Scholar : PubMed/NCBI | |
Paul I, Bhattacharya S, Chatterjee A and Ghosh MK: Current understanding on EGFR and Wnt/β-catenin signaling in glioma and their possible crosstalk. Genes Cancer. 4:427–446. 2013. View Article : Google Scholar : PubMed/NCBI | |
Sandberg CJ, Altschuler G, Jeong J, Strømme KK, Stangeland B, Murrell W, Grasmo-Wendler UH, Myklebost O, Helseth E, Vik-Mo EO, et al: Comparison of glioma stem cells to neural stem cells from the adult human brain identifies dysregulated Wnt- signaling and a fingerprint associated with clinical outcome. Exp Cell Res. 319:2230–2243. 2013. View Article : Google Scholar : PubMed/NCBI | |
Clevers H, Loh KM and Nusse R: Stem cell signaling. An integral program for tissue renewal and regeneration: Wnt signaling and stem cell control. Science. 346:12480122014. View Article : Google Scholar : PubMed/NCBI | |
Gong A and Huang S: FoxM1 and Wnt/β-catenin signaling in glioma stem cells. Cancer Res. 72:5658–5662. 2012. View Article : Google Scholar : PubMed/NCBI | |
Jin X, Jeon HY, Joo KM, Kim JK, Jin J, Kim SH, Kang BG, Beck S, Lee SJ, Kim JK, et al: Frizzled 4 regulates stemness and invasiveness of migrating glioma cells established by serial intracranial transplantation. Cancer Res. 71:3066–3075. 2011. View Article : Google Scholar : PubMed/NCBI | |
Brabletz S, Bajdak K, Meidhof S, Burk U, Niedermann G, Firat E, Wellner U, Dimmler A, Faller G, Schubert J and Brabletz T: The ZEB1/miR-200 feedback loop controls NOTCH signalling in cancer cells. EMBO J. 30:770–782. 2011. View Article : Google Scholar : PubMed/NCBI | |
Fan X, Khaki L, Zhu TS, Soules ME, Talsma CE, Gul N, Koh C, Zhang J, Li YM, Maciaczyk J, et al: NOTCH pathway blockade depletes CD133-positive glioblastoma cells and inhibits growth of tumor neurospheres and xenografts. Stem Cells. 28:5–16. 2010.PubMed/NCBI | |
Hu YY, Fu LA, Li SZ, Chen Y, Li JC, Han J, Liang L, Li L, Ji CC, Zheng MH and Han H: Hif-1α and Hif-2α differentially regulate NOTCH signaling through competitive interaction with the intracellular domain of NOTCH receptors in glioma stem cells. Cancer Lett. 349:67–76. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kristoffersen K, Villingshøj M, Poulsen HS and Stockhausen MT: Level of NOTCH activation determines the effect on growth and stem cell-like features in glioblastoma multiforme neurosphere cultures. Cancer Biol Ther. 14:625–637. 2013. View Article : Google Scholar : PubMed/NCBI | |
Stockhausen MT, Kristoffersen K and Poulsen HS: NOTCH signaling and brain tumors. Adv Exp Med Biol. 727:289–304. 2012. View Article : Google Scholar : PubMed/NCBI | |
Anido J, Sáez-Borderías A, Gonzàlez-Juncà A, Rodón L, Folch G, Carmona MA, Prieto-Sánchez RM, Barba I, Martínez-Sáez E, Prudkin L, et al: TGF-β receptor inhibitor target CD44(high)/Id1(high) glioma-initiating cell population in human glioblastoma. Cancer Cell. 18:655–668. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kaaijk P, Troost D, Morsink F, Keehnen RM, Leenstra S, Bosch DA and Pals ST: Expression of CD44 splice variants in human primary brain tumors. J Neurooncol. 26:185–190. 1995. View Article : Google Scholar : PubMed/NCBI | |
Merzak A, Koocheckpour S and Pilkington GJ: CD44 mediates human glioma cell adhesion and invasion in vitro. Cancer Res. 54:3988–3992. 1994.PubMed/NCBI | |
Xu Y, Stamenkovic I and Yu Q: CD44 attenuates activation of the hippo signaling pathway and is a prime therapeutic target for glioblastoma. Cancer Res. 70:2455–2464. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wei KC, Huang CY, Chen PY, Feng LY, Wu TWE, Chen SM, Tsai HC, Lu YJ, Tsang NM, Tseng CK, et al: Evaluation of the prognostic value of CD44 in glioblastoma multiforme. Anticancer Res. 30:253–259. 2010.PubMed/NCBI | |
Katsushima K and Kondo Y: Non-coding RNAs as epigenetic regulator of glioma stem-like cell differentiation. Front Genet. 5:142014. View Article : Google Scholar : PubMed/NCBI | |
Montagner S, Dehó L and Monticelli S: MicroRNAs in hematopoietic development. BMC Immunol. 15:142014. View Article : Google Scholar : PubMed/NCBI | |
Piubelli C, Meraviglia V, Pompilio G, D'Alessandra Y, Colombo GI and Rossini A: MicroRNAs and cardiac cell fate. Cells. 3:802–823. 2014. View Article : Google Scholar : PubMed/NCBI | |
Godlewski J, Newton HB, Chiocca EA and Lawler SE: MicroRNAs and glioblastoma; the stem cell connection. Cell Death Differ. 17:221–228. 2010. View Article : Google Scholar : PubMed/NCBI | |
Møller HG, Rasmussen AP, Andersen HH, Johnsen KB, Henriksen M and Duroux M: A systematic review of microRNA in glioblastoma multiforme: Micro-modulators in the mesenchymal mode of migration and invasion. Mol Neurobiol. 47:131–144. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bullock MD, Sayan AE, Packham GK and Mirnezami AH: MicroRNAs: Critical regulators of epithelial to mesenchymal (EMT) and mesenchymal to epithelial transition (MET) in cancer progression. Biol Cell. 104:3–12. 2012. View Article : Google Scholar : PubMed/NCBI | |
Shi Z, Zhang J, Qian X, Han L, Zhang K, Chen L, Liu J, Ren Y, Yang M, Zhang A, et al: AC1MMYR2, an inhibitor of dicer-mediated biogenesis of Oncomir miR-21, reverses epithelial-mesenchymal transition and suppresses tumor growth and progression. Cancer Res. 73:5519–5531. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhang M, Kleber S, Röhrich M, Timke C, Han N, Tuettenberg J, Martin-Villalba A, Debus J, Peschke P, Wirkner U, et al: Blockade of TGF-β signaling by the TGFβR-I kinase inhibitor LY2109761 enhances radiation response and prolongs survival in glioblastoma. Cancer Res. 71:7155–7167. 2011. View Article : Google Scholar : PubMed/NCBI | |
Timke C, Zieher H, Roth A, Hauser K, Lipson KE, Weber KJ, Debus J, Abdollahi A and Huber PE: Combination of vascular endothelial growth factor receptor/platelet-derived growth factor receptor inhibition markedly improves radiation tumor therapy. Clin Cancer Res. 14:2210–2219. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zhou YC, Liu JY, Li J, Zhang J, Xu YQ, Zhang HW, Qiu LB, Ding GR, Su XM, Mei-Shi and Guo GZ: Ionizing radiation promotes migration and invasion of cancer cells through transforming growth factor-beta-mediated epithelial-mesenchymal transition. Int J Radiat Oncol Biol Phys. 81:1530–1537. 2011. View Article : Google Scholar : PubMed/NCBI | |
Theys J, Jutten B, Habets R, Paesmans K, Groot AJ, Lambin P, Wouters BG, Lammering G and Vooijs M: E-Cadherin loss associated with EMT promotes radioresistance in human tumor cells. Radiother Oncol. 99:392–397. 2011. View Article : Google Scholar : PubMed/NCBI | |
Meng J, Li P, Zhang Q, Yang Z and Fu S: A radiosensitivity gene signature in predicting glioma prognostic via EMT pathway. Oncotarget. 5:4683–4693. 2014. View Article : Google Scholar : PubMed/NCBI | |
Piao Y, Liang J, Holmes L, Henry V, Sulman E and de Groot JF: Acquired resistance to anti-VEGF therapy in glioblastoma is associated with a mesenchymal transition. Clin Cancer Res. 19:4392–4403. 2013. View Article : Google Scholar : PubMed/NCBI | |
Jain RK: Normalization of tumor vasculature: An emerging concept in antiangiogenic therapy. Science. 307:58–62. 2005. View Article : Google Scholar : PubMed/NCBI | |
Gilbert MR, Dignam JJ, Armstrong TS, Wefel JS, Blumenthal DT, Vogelbaum MA, Colman H, Chakravarti A, Pugh S, Won M, et al: A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med. 370:699–708. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chinot OL, Wick W, Mason W, Henriksson R, Saran F, Nishikawa R, Carpentier AF, Hoang-Xuan K, Kavan P, Cernea D, et al: Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med. 370:709–722. 2014. View Article : Google Scholar : PubMed/NCBI | |
Behnan J, Isakson P, Joel M, Cilio C, Langmoen IA, Vik-Mo EO and Badn W: Recruited brain tumor-derived mesenchymal stem cells contribute to brain tumor progression. Stem Cells. 32:1110–1123. 2014. View Article : Google Scholar : PubMed/NCBI |