1
|
Ferlay J, Soerjomataram I, Dikshit R, Eser
S, Mathers C, Rebelo M, Parkin DM, Forman D and Bray F: Cancer
incidence and mortality worldwide: Sources, methods and major
patterns in GLOBOCAN 2012. Int J Cancer. 136:E359–E386. 2015.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Howard JH and Bland KI: Current management
and treatment strategies for breast cancer. Curr Opin Obstet
Gynecol. 24:44–48. 2012. View Article : Google Scholar : PubMed/NCBI
|
3
|
Itano JK, Brant J, Conde F and Saria M:
Breast Cancer. Core Curriculum for Oncology Nursing (5th).
(Philadelphia, PA). Elsevier Health Sciences. 752015.
|
4
|
Weigelt B, Peterse JL and van't Veer LJ:
Breast cancer metastasis: Markers and models. Nat Rev Cancer.
5:591–602. 2005. View
Article : Google Scholar : PubMed/NCBI
|
5
|
Ulrich CM, Robien K and McLeod HL: Cancer
pharmacogenetics: Polymorphisms, pathways and beyond. Nat Rev
Cancer. 3:912–920. 2003. View
Article : Google Scholar : PubMed/NCBI
|
6
|
Klaunig JE, Kamendulis LM and Hocevar BA:
Oxidative stress and oxidative damage in carcinogenesis. Toxicol
Pathol. 38:96–109. 2010. View Article : Google Scholar : PubMed/NCBI
|
7
|
Hayes JD and Pulford DJ: The glutathione
S-transferase supergene family: Regulation of GST and the
contribution of the isoenzymes to cancer chemoprotection and drug
resistance. Crit Rev Biochem Mol Biol. 30:445–600. 1995. View Article : Google Scholar : PubMed/NCBI
|
8
|
Yang G, Shu XO, Ruan ZX, Cai QY, Jin F,
Gao YT and Zheng W: Genetic polymorphisms in
glutathione-S-transferase genes (GSTM1, GSTT1, GSTP1) and survival
after chemotherapy for invasive breast carcinoma. Cancer.
103:52–58. 2005. View Article : Google Scholar : PubMed/NCBI
|
9
|
Johansson AS, Stenberg G, Widersten M and
Mannervik B: Structure-activity relationships and thermal stability
of human glutathione transferase P1-1 governed by the H-site
residue 105. J Mol Biol. 278:687–698. 1998. View Article : Google Scholar : PubMed/NCBI
|
10
|
Zhang BL, Sun T, Zhang BN, Zheng S, Lü N,
Xu BH, Wang X, Chen GJ, Yu DK and Lin DX: Polymorphisms of GSTP1 is
associated with differences of chemotherapy response and toxicity
in breast cancer. Chin Med J (Engl). 124:199–204. 2011.PubMed/NCBI
|
11
|
Medvedev AE: Toll-like receptor
polymorphisms, inflammatory and infectious diseases, allergies, and
cancer. J Interferon Cytokine Res. 33:467–484. 2013. View Article : Google Scholar : PubMed/NCBI
|
12
|
Xie W, Wang Y, Huang Y, Yang H, Wang J and
Hu Z: Toll-like receptor 2 mediates invasion via activating
NF-kappaB in MDA-MB-231 breast cancer cells. Biochem Biophys Res
Commun. 379:1027–1032. 2009. View Article : Google Scholar : PubMed/NCBI
|
13
|
Huang B, Zhao J, Unkeless JC, Feng ZH and
Xiong H: TLR signaling by tumor and immune cells: A double-edged
sword. Oncogene. 27:218–224. 2008. View Article : Google Scholar : PubMed/NCBI
|
14
|
Noguchi E, Nishimura F, Fukai H, Kim J,
Ichikawa K, Shibasaki M and Arinami T: An association study of
asthma and total serum immunoglobin E levels for Toll-like receptor
polymorphisms in a Japanese population. Clin Exp Allergy.
34:177–183. 2004. View Article : Google Scholar : PubMed/NCBI
|
15
|
Nischalke HD, Coenen M, Berger C,
Aldenhoff K, Müller T, Berg T, Krämer B, Körner C, Odenthal M,
Schulze F, et al: The toll-like receptor 2 (TLR2) −196 to −174 del
ins polymorphism affects viral loads and susceptibility to
hepatocellular carcinoma in chronic hepatitis C. Int J Cancer.
130:1470–1475. 2012. View Article : Google Scholar : PubMed/NCBI
|
16
|
Tahara T, Arisawa T, Wang F, Shibata T,
Nakamura M, Sakata M, Hirata I and Nakano H: Toll-like receptor
2–196 to 174del polymorphism influences the susceptibility of
Japanese people to gastric cancer. Cancer Sci. 98:1790–1794. 2007.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Latz E, Schoenemeyer A, Visintin A,
Fitzgerald KA, Monks BG, Knetter CF, Lien E, Nilsen NJ, Espevik T
and Golenbock DT: TLR9 signals after translocating from the ER to
CpG DNA in the lysosome. Nat Immunol. 5:190–198. 2004. View Article : Google Scholar : PubMed/NCBI
|
18
|
Tian J, Avalos AM, Mao SY, Chen B, Senthil
K, Wu H, Parroche P, Drabic S, Golenbock D, Sirois C, et al:
Toll-like receptor 9-dependent activation by DNA-containing immune
complexes is mediated by HMGB1 and RAGE. Nat Immunol. 8:487–496.
2007. View
Article : Google Scholar : PubMed/NCBI
|
19
|
Ilvesaro JM, Merrell MA, Li L, Wakchoure
S, Graves D, Brooks S, Rahko E, Jukkola-Vuorinen A, Vuopala KS,
Harris KW and Selander KS: Toll-like receptor 9 mediates CpG
oligonucleotide-induced cellular invasion. Mol Cancer Res.
6:1534–1543. 2008. View Article : Google Scholar : PubMed/NCBI
|
20
|
Roszak A, Lianeri M, Sowińska A and
Jagodziński PP: Involvement of Toll-like receptor 9 polymorphism in
cervical cancer development. Mol Biol Rep. 39:8425–8430. 2012.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Kutikhin AG: Association of polymorphisms
in TLR genes and in genes of the Toll-like receptor signaling
pathway with cancer risk. Hum Immunol. 72:1095–1116. 2011.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Zhang L, Qin H, Guan X, Zhang K and Liu Z:
The TLR9 gene polymorphisms and the risk of cancer: Evidence from a
meta-analysis. PLoS One. 8:e717852013. View Article : Google Scholar : PubMed/NCBI
|
23
|
Robinson IA, McKee G, Nicholson A, D'Arcy
J, Jackson PA, Cook MG and Kissin MW: Prognostic value of
cytological grading of fine-needle aspirates from breast
carcinomas. Lancet. 343:947–949. 1994. View Article : Google Scholar : PubMed/NCBI
|
24
|
Singletary SE and Connolly JL: Breast
cancer staging: Working with the sixth edition of the AJCC Cancer
Staging Manual. CA Cancer J. Clin. 56:37–47. 2006.
|
25
|
Høgdall EV, Christensen L, Høgdall CK,
Blaakaer J, Gayther S, Jacobs IJ, Christensen IJ and Kjaer SK:
Prognostic value of estrogen receptor and progesterone receptor
tumor expression in Danish ovarian cancer patients: From the
'MALOVA' ovarian cancer study. Oncol Rep. 18:1051–1059.
2007.PubMed/NCBI
|
26
|
Wolff AC, Hammond ME, Hicks DG, Dowsett M,
McShane LM, Allison KH, Allred DC, Bartlett JM, Bilous M,
Fitzgibbons P, et al: American Society of Clinical Oncology;
College of American Pathologists: Recommendations for human
epidermal growth factor receptor 2 testing in breast cancer:
American Society of Clinical Oncology/College of American
Pathologists clinical practice guideline update. J. Clin Oncol.
31:3997–4013. 2013. View Article : Google Scholar
|
27
|
Harries LW, Stubbins MJ, Forman D, Howard
G and Wolf CR: Identification of genetic polymorphisms at the
glutathione S-transferase Pi locus and association with
susceptibility to bladder, testicular and prostate cancer.
Carcinogenesis. 18:641–644. 1997. View Article : Google Scholar : PubMed/NCBI
|
28
|
de Oliveira JG and Silva AE: Polymorphisms
of the TLR2 and TLR4 genes are associated with risk of gastric
cancer in a Brazilian population. World J Gastroenterol.
18:1235–1242. 2012. View Article : Google Scholar : PubMed/NCBI
|
29
|
Etem EO, Elyas H, Ozgocmen S, Yildirim A
and Godekmerdan A: The investigation of toll-like receptor 3, 9 and
10 gene polymorphisms in Turkish rheumatoid arthritis patients.
Rheumatol Int. 31:1369–1374. 2011. View Article : Google Scholar : PubMed/NCBI
|
30
|
Shea TC, Claflin G, Comstock KE, Sanderson
BJ, Burstein NA, Keenan EJ, Mannervik B and Henner WD: Glutathione
transferase activity and isoenzyme composition in primary human
breast cancers. Cancer Res. 50:6848–6853. 1990.PubMed/NCBI
|
31
|
Sharma A, Pandey A, Sharma S, Chatterjee
I, Mehrotra R, Sehgal A and Sharma JK: Genetic polymorphism of
glutathione S-transferase P1 (GSTP1) in Delhi population and
comparison with other global populations. Meta Gene. 2:134–142.
2014. View Article : Google Scholar : PubMed/NCBI
|
32
|
Holley SL, Fryer AA, Haycock JW, Grubb SE,
Strange RC and Hoban PR: Differential effects of glutathione
S-transferase pi (GSTP1) haplotypes on cell proliferation and
apoptosis. Carcinogenesis. 28:2268–2273. 2007. View Article : Google Scholar : PubMed/NCBI
|
33
|
Adler V and Pincus MR: Effector peptides
from glutathione-S-transferase-pi affect the activation of jun by
jun-N-terminal kinase. Ann Clin Lab Sci. 34:35–46. 2004.PubMed/NCBI
|
34
|
Etokebe GE, Knezević J, Petricević B,
Pavelić J, Vrbanec D and Dembić Z: Single-nucleotide polymorphisms
in genes encoding toll-like receptor −2,-3,-4 and −9 in
case-control study with breast cancer. Genet Test Mol Biomarkers.
13:729–734. 2009. View Article : Google Scholar : PubMed/NCBI
|
35
|
Theodoropoulos GE, Saridakis V, Karantanos
T, Michalopoulos NV, Zagouri F, Kontogianni P, Lymperi M, Gazouli M
and Zografos GC: Toll-like receptors gene polymorphisms may confer
increased susceptibility to breast cancer development. Breast.
21:534–538. 2012. View Article : Google Scholar : PubMed/NCBI
|
36
|
Ng CK, Pemberton HN and Reis-Filho JS:
Breast cancer intratumor genetic heterogeneity: Causes and
implications. Expert Rev Anticancer Ther. 12:1021–1032. 2012.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Novak N, Yu CF, Bussmann C, Maintz L, Peng
WM, Hart J, Hagemann T, Diaz-Lacava A, Baurecht HJ, Klopp N, et al:
Putative association of a TLR9 promoter polymorphism with atopic
eczema. Allergy. 62:766–772. 2007. View Article : Google Scholar : PubMed/NCBI
|
38
|
Ashton KA, Proietto A, Otton G, Symonds I,
McEvoy M, Attia J and Scott RJ: Toll-like receptor (TLR) and
nucleosome-binding oligomerization domain (NOD) gene polymorphisms
and endometrial cancer risk. BMC Cancer. 10:3822010. View Article : Google Scholar : PubMed/NCBI
|