1
|
Liu S, Clouthier SG and Wicha MS: Role of
microRNAs in the regulation of breast cancer stem cells. J Mammary
Gland Biol Neoplasia. 17:15–21. 2012. View Article : Google Scholar : PubMed/NCBI
|
2
|
Wang F, Li H, Tan PH, Chua ET, Yeo RM, Lim
FL, Kim SW, Tan DY and Wong FY: Validation of a nomogram in the
prediction of local recurrence risks after conserving surgery for
Asian women with ductal carcinoma in situ of the breast. Clin Oncol
(R Coll Radiol). 26:684–691. 2014. View Article : Google Scholar : PubMed/NCBI
|
3
|
Fortune-Greeley AK, Wheeler SB, Meyer AM,
Reeder-Hayes KE, Biddle AK, Muss HB and Carpenter WR: Preoperative
breast MRI and surgical outcomes in elderly women with invasive
ductal and lobular carcinoma: a population-based study. Breast
Cancer Res Treat. 143:203–212. 2014. View Article : Google Scholar : PubMed/NCBI
|
4
|
Hansen BT, Nygård M, Falk RS and Hofvind
S: Breast cancer and ductal carcinoma in situ among women with
prior squamous or glandular precancer in the cervix: a
register-based study. Br J Cancer. 107:1451–1453. 2012. View Article : Google Scholar : PubMed/NCBI
|
5
|
Cimino D, De Pittà C, Orso F, Zampini M,
Casara S, Penna E, Quaglino E, Forni M, Damasco C, Pinatel E, et
al: miR148b is a major coordinator of breast cancer progression in
a relapse-associated microRNA signature by targeting ITGA5, ROCK1,
PIK3CA, NRAS and CSF1. FASEB J. 27:1223–1235. 2013. View Article : Google Scholar : PubMed/NCBI
|
6
|
Meng Y, Zou Q, Liu T, Cai X, Huang Y and
Pan J: microRNA-335 inhibits proliferation, cell-cycle progression,
colony formation, and invasion via targeting PAX6 in breast cancer
cells. Mol Med Rep. 11:379–385. 2015.PubMed/NCBI
|
7
|
Tang H, Liu P, Yang L and Xie X, Ye F, Wu
M, Liu X, Chen B, Zhang L and Xie X: miR-185 suppresses tumor
proliferation by directly targeting E2F6 and DNMT1 and indirectly
up-regulating BRCA1 in triple negative breast cancer. Mol Cancer
Ther. 13:3185–3197. 2014. View Article : Google Scholar : PubMed/NCBI
|
8
|
Barrett T, Wilhite SE, Ledoux P,
Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH,
Sherman PM, Holko M, et al: NCBI GEO: archive for functional
genomics data sets-update. Nucleic Acids Res. 41(Database Issue):
D991–D995. 2013. View Article : Google Scholar : PubMed/NCBI
|
9
|
Wilson CL and Miller CJ: Simpleaffy: a
BioConductor package for Affymetrix Quality Control and data
analysis. Bioinformatics. 21:3683–3685. 2005. View Article : Google Scholar : PubMed/NCBI
|
10
|
Gautier L, Cope L, Bolstad BM and Irizarry
RA: affy - analysis of Affymetrix GeneChip data at the probe level.
Bioinformatics. 20:307–315. 2004. View Article : Google Scholar : PubMed/NCBI
|
11
|
Li Y, Qiu C, Tu J, Geng B, Yang J, Jiang T
and Cui Q: HMDD v2.0: a database for experimentally supported human
microRNA and disease associations. Nucleic Acids Res. 42(Database
Issue): D1070–D1074. 2014. View Article : Google Scholar : PubMed/NCBI
|
12
|
Enright AJ, John B, Gaul U, Tuschl T,
Sander C and Marks DS: MicroRNA targets in Drosophila.
Genome Biol. 5:R12003. View Article : Google Scholar : PubMed/NCBI
|
13
|
Wang X and El Naqa IM: Prediction of both
conserved and nonconserved microRNA targets in animals.
Bioinformatics. 24:325–332. 2008. View Article : Google Scholar : PubMed/NCBI
|
14
|
Krek A, Grün D, Poy MN, Wolf R, Rosenberg
L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M
and Rajewsky N: Combinatorial microRNA target predictions. Nature
Genet. 37:495–500. 2005. View
Article : Google Scholar : PubMed/NCBI
|
15
|
Kertesz M, Iovino N, Unnerstall U, Gaul U
and Segal E: The role of site accessibility in microRNA target
recognition. Nature Genet. 39:1278–1284. 2007. View Article : Google Scholar : PubMed/NCBI
|
16
|
Lewis BP, Shih IH, Jones-Rhoades MW,
Bartel DP and Burge CB: Prediction of mammalian microRNA targets.
Cell. 115:787–798. 2003. View Article : Google Scholar : PubMed/NCBI
|
17
|
Zhao M, Sun J and Zhao Z: TSGene: A web
resource for tumor suppressor genes. Nucleic Acids Res. 41(Database
Issue): D970–D976. 2013. View Article : Google Scholar : PubMed/NCBI
|
18
|
Chen JS, Hung WS, Chan HH, Tsai SJ and Sun
HS: In silico identification of oncogenic potential of fyn-related
kinase in hepatocellular carcinoma. Bioinformatics. 29:420–427.
2013. View Article : Google Scholar : PubMed/NCBI
|
19
|
Huang DW, Sherman BT, Tan Q, Collins JR,
Alvord G, Roayaei J, Stephens R, Baseler MW, Lane HC and Lempicki
RA: The DAVID gene functional classification tool: a novel
biological module-centric algorithm to functionally analyze large
gene lists. Genome Biol. 8:R1832007. View Article : Google Scholar : PubMed/NCBI
|
20
|
Kanehisa M and Goto S: KEGG: Kyoto
encyclopedia of genes and genomes. Nucleic Acids Res. 28:27–30.
2000. View Article : Google Scholar : PubMed/NCBI
|
21
|
Tran NT and Huang CH: Gene expression and
gene ontology enrichment analysis for H3K4me3 and H3K4me1 in mouse
liver and mouse embryonic stem cell using ChIP-Seq and RNA-Seq.
Gene Regul Syst Bio. 8:33–43. 2014. View Article : Google Scholar : PubMed/NCBI
|
22
|
Smoot ME, Ono K, Ruscheinski J, Wang PL
and Ideker T: Cytoscape 2.8: New features for data integration and
network visualization. Bioinformatics. 27:431–432. 2011. View Article : Google Scholar : PubMed/NCBI
|
23
|
Sakurai M, Miki Y, Masuda M, Hata S,
Shibahara Y, Hirakawa H, Suzuki T and Sasano H: LIN28: a regulator
of tumor-suppressing activity of let-7 microRNA in human breast
cancer. J Steroid Biochem Mol Biol. 131:101–106. 2012. View Article : Google Scholar : PubMed/NCBI
|
24
|
Gebeshuber CA and Martinez J: miR-100
suppresses IGF2 and inhibits breast tumorigenesis by interfering
with proliferation and survival signaling. Oncogene. 32:3306–3310.
2013. View Article : Google Scholar : PubMed/NCBI
|
25
|
Henson BJ, Bhattacharjee S, O'Dee DM,
Feingold E and Gollin SM: Decreased expression of miR-125b and
miR-100 in oral cancer cells contributes to malignancy. Genes
Chromosomes Cancer. 48:569–582. 2009. View Article : Google Scholar : PubMed/NCBI
|
26
|
Nagaraja AK, Creighton CJ, Yu Z, Zhu H,
Gunaratne PH, Reid JG, Olokpa E, Itamochi H, Ueno NT, Hawkins SM,
et al: A link between mir-100 and FRAP1/mTOR in clear cell ovarian
cancer. Mol Endocrinol. 24:447–463. 2010. View Article : Google Scholar : PubMed/NCBI
|
27
|
Yan X, Chen X, Liang H, Deng T, Chen W,
Zhang S, Liu M, Gao X, Liu Y, Zhao C, et al: miR-143 and miR-145
synergistically regulate ERBB3 to suppress cell proliferation and
invasion in breast cancer. Mol Cancer. 13:2202014. View Article : Google Scholar : PubMed/NCBI
|
28
|
Lehmann U, Streichert T, Otto B, Albat C,
Hasemeier B, Christgen H, Schipper E, Hille U, Kreipe HH and Länger
F: Identification of differentially expressed microRNAs in human
male breast cancer. BMC Cancer. 10:1092010. View Article : Google Scholar : PubMed/NCBI
|
29
|
Baca-López K, Mayorga M, Hidalgo-Miranda
A, Gutiérrez-Nájera N and Hernández-Lemus E: The role of master
regulators in the metabolic/transcriptional coupling in breast
carcinomas. PLoS One. 7:e426782012. View Article : Google Scholar : PubMed/NCBI
|
30
|
Sturtzel C, Testori J, Schweighofer B,
Bilban M and Hofer E: The transcription factor MEF2C negatively
controls angiogenic sprouting of endothelial cells depending on
oxygen. PloS One. 9:e1015212014. View Article : Google Scholar : PubMed/NCBI
|
31
|
Zhou Y, Liu Y, Jiang X, Du H, Li X and Zhu
Q: Polymorphism of chicken myocyte-specific enhancer-binding factor
2A gene and its association with chicken carcass traits. Mol Biol
Rep. 37:587–594. 2010. View Article : Google Scholar : PubMed/NCBI
|
32
|
Banka S, Cain SA, Carim S, Daly SB,
Urquhart JE, Erdem G, Harris J, Bottomley M, Donnai D, Kerr B, et
al: Leri's pleonosteosis, a congenital rheumatic disease, results
from microduplication at 8q22.1 encompassing GDF6 and SDC2 and
provides insight into systemic sclerosis pathogenesis. Ann Rheum
Dis. 74:1249–1256. 2015. View Article : Google Scholar : PubMed/NCBI
|
33
|
Bollig-Fischer A, Marchetti L, Mitrea C,
Wu J, Kruger A, Manca V and Drăghici S: Modeling time-dependent
transcription effects of HER2 oncogene and discovery of a role for
E2F2 in breast cancer cell-matrix adhesion. Bioinformatics.
30:3036–3043. 2014. View Article : Google Scholar : PubMed/NCBI
|
34
|
Teishima J, Yano S, Shoji K, Hayashi T,
Goto K, Kitano H, Oka K, Nagamatsu H and Matsubara A: Accumulation
of FGF9 in prostate cancer correlates with
epithelial-to-mesenchymal transition and induction of VEGF-A
expression. Anticancer Res. 34:695–700. 2014.PubMed/NCBI
|