Molecular mechanisms of the effect of TGF-β1 on U87 human glioblastoma cells
- Authors:
- Igor Bryukhovetskiy
- Valeriy Shevchenko
-
Affiliations: Laboratory of Molecular and Cellular Neurobiology, School of Biomedicine, Far Eastern Federal University, Vladivostok 690091, Russian Federation - Published online on: June 22, 2016 https://doi.org/10.3892/ol.2016.4756
- Pages: 1581-1590
This article is mentioned in:
Abstract
Holland EC: Glioblastoma multiforme: The terminator. Proc Natl Acad Sci USA. 97:6242–6244. 2000. View Article : Google Scholar : PubMed/NCBI | |
Adamson C, Kanu OO, Mehta AI, Di C, Lin N, Mattox AK and Bigner DD: Glioblastoma multiforme: A review of where we have been and where we are going. Expert Opin Investig Drugs. 18:1061–1083. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wang Y and Jiang T: Understanding high grade glioma: Molecular mechanism, therapy and comprehensive management. Cancer Lett. 331:139–146. 2013. View Article : Google Scholar : PubMed/NCBI | |
Westphal M and Lamszus K: The neurobiology of gliomas: From cell biology tothe development of therapeutic approaches. Nat Rev Neurosci. 12:495–508. 2011. View Article : Google Scholar : PubMed/NCBI | |
Rich JN: The role of transforming growth factor-beta in primary brain tumors. Front Biosci. 8:e245–e260. 2003. View Article : Google Scholar : PubMed/NCBI | |
Platten M, Wick W and Weller M: Malignant glioma biology: Role for TGF-beta in growth, motility, angiogenesis, and immune escape. Microsc Res Tech. 52:401–410. 2001. View Article : Google Scholar : PubMed/NCBI | |
Ikushima H, Todo T, Ino Y, Takahashi M, Miyazawa K and Miyazono K: Autocrine TGF-beta signaling maintains tumorigenicity of glioma-initiating cells through Sry-related HMG-box factors. Cell Stem Cell. 5:504–514. 2009. View Article : Google Scholar : PubMed/NCBI | |
Gregory PA, Bracken CP, Smith E, Bert AG, Wright JA, Roslan S, Morris M, Wyatt L, Farshid G, Lim YY, et al: An autocrine TGF-beta/ZEB/miR-200 signaling network regulates establishment and maintenance of epithelial-mesenchymal transition. Mol Biol Cell. 22:1686–1698. 2011. View Article : Google Scholar : PubMed/NCBI | |
Seoane J: Escaping from the TGFbeta anti-proliferative control. Carcinogenesis. 27:2148–2156. 2006. View Article : Google Scholar : PubMed/NCBI | |
Massagué J: TGFbeta in cancer. Cell. 134:215–230. 2008. View Article : Google Scholar : PubMed/NCBI | |
Derynck R, Akhurst RJ and Balmain A: TGF-beta signaling in tumor suppression and cancer progression. Nat Genet. 29:117–129. 2001. View Article : Google Scholar : PubMed/NCBI | |
Siegel PM and Massagué J: Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer. Nat Rev Cancer. 3:807–821. 2003. View Article : Google Scholar : PubMed/NCBI | |
Rahimi RA and Leof EB: TGF-beta signaling: A tale of two responses. J Cell Biochem. 102:593–608. 2007. View Article : Google Scholar : PubMed/NCBI | |
Massagué J and Gomis RR: The logic of TGFbeta signaling. FEBS Lett. 580:2811–2820. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kalluri R and Weinberg RA: The basics of epithelial-mesenchymal transition. J Clin Invest. 119:1420–1428. 2009. View Article : Google Scholar : PubMed/NCBI | |
Morel AP, Lièvre M, Thomas C, Hinkal G, Ansieau S and Puisieux A: Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS One. 3:e28882008. View Article : Google Scholar : PubMed/NCBI | |
Taube JH, Herschkowitz JI, Komurov K, Zhou AY, Gupta S, Yang J, Hartwell K, Onder TT, Gupta PB, Evans KW, et al: Core epithelial-to-mesenchymal transition interactome gene-expression signature is associated with claudin-low and metaplastic breast cancer subtypes. Proc Natl Acad Sci USA. 107:15449–15454. 2010. View Article : Google Scholar : PubMed/NCBI | |
Bryukhovetskiy A, Shevchenko V, Kovalev S, Chekhonin V, Baklaushev V, Bryukhovetskiy I and Zhukova M: To the novel paradigm of proteome-based cell therapy of tumors: Through comparative proteome mapping of tumor stem cells and tissue-specific stem cells of humans. Cell Transplant. 23(Suppl 1): S151–S170. 2014. View Article : Google Scholar : PubMed/NCBI | |
Cox J and Mann M: MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol. 26:1367–1372. 2008. View Article : Google Scholar : PubMed/NCBI | |
Louis DN: Molecular pathology of malignant gliomas. Annu Rev Pathol. 1:97–117. 2006. View Article : Google Scholar : PubMed/NCBI | |
Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW and Kleihues P: The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 114:97–109. 2007. View Article : Google Scholar : PubMed/NCBI | |
Cancer Genome Atlas Research Network: Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 455:1061–1068. 2008. View Article : Google Scholar : PubMed/NCBI | |
Platten M, Wick W and Weller M: Malignant glioma biology: Role for TGF-beta in growth, motility, angiogenesis, and immune escape. Microsc Res Tech. 52:401–410. 2001. View Article : Google Scholar : PubMed/NCBI | |
Sasaki A, Naganuma H, Satoh E, Nagasaka M, Isoe S, Nakano S and Nukui H: Secretion of transforming growth factor-beta 1 and -beta 2 by malignant glioma cells. Neurol Med Chir (Tokyo). 35:423–430. 1995. View Article : Google Scholar : PubMed/NCBI | |
Wesolowska A, Kwiatkowska A, Slomnicki L, Dembinski M, Master A, Sliwa M, Franciszkiewicz K, Chouaib S and Kaminska B: Microglia-derived TGF-beta as an important regulator of glioblastoma invasion - an inhibition of TGF-beta-dependent effects by shRNA against human TGF-beta type II receptor. Oncogene. 27:918–930. 2008. View Article : Google Scholar : PubMed/NCBI | |
Hannon GJ and Beach D: P15INK4B is a potential effector of TGF-beta-induced cell-cycle arrest. Nature. 371:257–261. 1994. View Article : Google Scholar : PubMed/NCBI | |
Datto MB, Li Y, Panus JF, Howe DJ, Xiong Y and Wang XF: Transforming growth factor beta induces the cyclin-dependent kinase inhibitor p21 through a p53-independent mechanism. Proc Natl Acad Sci USA. 92:5545–5549. 1995. View Article : Google Scholar : PubMed/NCBI | |
Eblen ST, Fautsch MP, Burnette RJ, Joshi P and Leof EB: Cell cycle-dependent inhibition of p34cdc2 synthesis by transforming growth factor beta 1 in cycling epithelial cells. Cell Growth Differ. 5:109–116. 1994.PubMed/NCBI | |
Ignotz RA, Endo T and Massagué J: Regulation of fibronectin and type I collagen mRNA levels by transforming growth factor-beta. J Biol Chem. 262:6443–6446. 1987.PubMed/NCBI | |
Margadant C and Sonnenberg A: Integrin-TGF-beta crosstalk in fibrosis, cancer and wound healing. EMBO Rep. 11:97–105. 2010. View Article : Google Scholar : PubMed/NCBI | |
Nakada M, Nakada S, Demuth T, Tran NL, Hoelzinger DB and Berens ME: Molecular targets of glioma invasion. Cell Mol Life Sci. 64:458–478. 2007. View Article : Google Scholar : PubMed/NCBI | |
Nakada M, Nambu E, Furuyama N, Yoshida Y, Takino T, Hayashi Y, Sato H, Sai Y, Tsuji T, Miyamoto KI, et al: Integrin α3 is overexpressed in glioma stem-like cells and promotes invasion. Br J Cancer. 108:2516–2524. 2013. View Article : Google Scholar : PubMed/NCBI | |
Galanis E, Jaeckle KA, Maurer MJ, Reid JM, Ames MM, Hardwick JS, Reilly JF, Loboda A, Nebozhyn M, Fantin VR, et al: Phase II trial of vorinostat in recurrent glioblastoma multiforme: A north central cancer treatment group study. J Clin Oncol. 27:2052–2058. 2009. View Article : Google Scholar : PubMed/NCBI | |
Alvarez AA, Field M, Bushnev S, Longo MS and Sugaya K: The effect of histone deacetylase inhibitors on glioblastoma-derived stem cells. J Mol Neurosci. 55:7–20. 2015. View Article : Google Scholar : PubMed/NCBI | |
Pines G, Huang PH, Zwang Y, White FM and Yarden Y: EGFRvIV: A previously uncharacterized oncogenic mutant reveals a kinase autoinhibitory mechanism. Oncogene. 29:5850–5860. 2010. View Article : Google Scholar : PubMed/NCBI | |
Liang S, Shen G, Liu Q, Xu Y, Zhou L, Xiao S, Xu Z, Gong F, You C and Wei Y: Isoform-specific expression and characterization of 14-3-3 proteins in human glioma tissues discovered by stable isotope labeling with amino acids in cell culture-based proteomic analysis. Proteomics Clin Appl. 3:743–753. 2009. View Article : Google Scholar : PubMed/NCBI | |
Cao L, Cao W, Zhang W, Lin H, Yang X, Zhen H, Cheng J, Dong W, Huo J and Zhang X: Identification of 14-3-3 protein isoforms in human astrocytoma by immunohistochemistry. Neurosci Lett. 432:94–99. 2008. View Article : Google Scholar : PubMed/NCBI | |
Yang X, Cao W, Lin H, Zhang W, Lin W, Cao L, Zhen H, Huo J and Zhang X: Isoform-specific expression of 14-3-3 proteins in human astrocytoma. J Neurol Sci. 276:54–59. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lamouille S, Xu J and Derynck R: Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 15:178–196. 2014. View Article : Google Scholar : PubMed/NCBI | |
Huang RY, Guilford P and Thiery JP: Early events in cell adhesion and polarity during epithelial-mesenchymal transition. J Cell Sci. 125:4417–4422. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yilmaz M and Christofori G: EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev. 28:15–33. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lehembre F, Yilmaz M, Wicki A, Schomber T, Strittmatter K, Ziegler D, Kren A, Went P, Derksen PW, Berns A, et al: NCAM-induced focal adhesion assembly: A functional switch upon loss of E-cadherin. EMBO J. 27:2603–2615. 2008. View Article : Google Scholar : PubMed/NCBI | |
Hansen SM, Berezin V and Bock E: Signaling mechanisms of neurite outgrowth induced by the cell adhesion molecules NCAM and N-cadherin. Cell Mol Life Sci. 65:3809–3821. 2008. View Article : Google Scholar : PubMed/NCBI | |
Nisticò P, Bissell MJ and Radisky DC: Epithelial-mesenchymal transition: General principles and pathological relevance with special emphasis on the role of matrix metalloproteinases. Cold Spring Harb Perspect Biol. 4:pii: a011908. 2012. View Article : Google Scholar | |
Derynck R and Zhang YE: Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature. 425:577–584. 2003. View Article : Google Scholar : PubMed/NCBI | |
Moustakas A and Heldin CH: Non-Smad TGF-beta signals. J Cell Sci. 118:3573–3584. 2005. View Article : Google Scholar : PubMed/NCBI | |
Xu J, Lamouille S and Derynck R: TGF-beta-induced epithelial to mesenchymal transition. Cell Res. 19:156–172. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zavadil J and Böttinger EP: TGF-beta and epithelial-to-mesenchymal transitions. Oncogene. 24:5764–5774. 2005. View Article : Google Scholar : PubMed/NCBI | |
Lamouille S and Derynck R: Emergence of the phosphoinositide 3-kinase-Akt-mammalian target of rapamycin axis in transforming growth factor-β-induced epithelial-mesenchymal transition. Cells Tissues Organs. 193:8–22. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ridley AJ: Life at the leading edge. Cell. 145:1012–1022. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ozdamar B, Bose R, Barrios-Rodiles M, Wang HR, Zhang Y and Wrana JL: Regulation of the polarity protein Par6 by TGFbeta receptors controls epithelial cell plasticity. Science. 307:1603–1609. 2005. View Article : Google Scholar : PubMed/NCBI | |
Bhowmick NA, Ghiassi M, Bakin A, Aakre M, Lundquist CA, Engel ME, Arteaga CL and Moses HL: Transforming growth factor-beta1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism. Mol Biol Cell. 12:27–36. 2001. View Article : Google Scholar : PubMed/NCBI | |
Vardouli L, Moustakas A and Stournaras C: LIM-kinase 2 and cofilin phosphorylation mediate actin cytoskeleton reorganization induced by transforming growth factor-β. J Biol Chem. 280:11448–11457. 2005. View Article : Google Scholar : PubMed/NCBI | |
Tavares AL, Mercado-Pimentel ME, Runyan RB and Kitten GT: TGF beta-mediated RhoA expression is necessary for epithelial-mesenchymal transition in the embryonic chick heart. Dev Dyn. 235:1589–1598. 2006. View Article : Google Scholar : PubMed/NCBI | |
Sun X, Meyers EN, Lewandoski M and Martin GR: Targeted disruption of Fgf8 causes failure of cell migration in the gastrulating mouse embryo. Genes Dev. 13:1834–1846. 1999. View Article : Google Scholar : PubMed/NCBI | |
Lu Z, Ghosh S, Wang Z and Hunter T: Downregulation of caveolin-1 function by EGF leads to the loss of E-cadherin, increased transcriptional activity of beta-catenin, and enhanced tumor cell invasion. Cancer Cell. 4:499–515. 2003. View Article : Google Scholar : PubMed/NCBI | |
Lo HW, Hsu SC, Xia W, Cao X, Shih JY, Wei Y, Abbruzzese JL, Hortobagyi GN and Hung MC: Epidermal growth factor receptor cooperates with signal transducer and activator of transcription 3 to induce epithelial-mesenchymal transition in cancer cells via up-regulation of TWIST gene expression. Cancer Res. 67:9066–9076. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ahmed N, Maines-Bandiera S, Quinn MA, Unger WG, Dedhar S and Auersperg N: Molecular pathways regulating EGF-induced epithelio-mesenchymal transition in human ovarian surface epithelium. Am J Physiol Cell Physiol. 290:C1532–C1542. 2006. View Article : Google Scholar : PubMed/NCBI | |
Moody SE, Perez D, Pan TC, Sarkisian CJ, Portocarrero CP, Sterner CJ, Notorfrancesco KL, Cardiff RD and Chodosh LA: The transcriptional repressor Snail promotes mammary tumor recurrence. Cancer Cell. 8:197–209. 2005. View Article : Google Scholar : PubMed/NCBI | |
Knutson KL, Lu H, Stone B, Reiman JM, Behrens MD, Prosperi CM, Gad EA, Smorlesi A and Disis ML: Immunoediting of cancers may lead to epithelial to mesenchymal transition. J Immunol. 177:1526–1533. 2006. View Article : Google Scholar : PubMed/NCBI | |
Yang L, Lin C and Liu ZR: P68 RNA helicase mediates PDGF-induced epithelial mesenchymal transition by displacing Axin from beta-catenin. Cell. 127:139–155. 2006. View Article : Google Scholar : PubMed/NCBI | |
Robbins JR, McGuire PG, Wehrle-Haller B and Rogers SL: Diminished matrix metalloproteinase 2 (MMP-2) in ectomesenchyme-derived tissues of the Patch mutant mouse: Regulation of MMP-2 by PDGF and effects on mesenchymal cell migration. Dev Biol. 212:255–263. 1999. View Article : Google Scholar : PubMed/NCBI | |
Wanami LS, Chen HY, Peiró S, de García Herreros A and Bachelder RE: Vascular endothelial growth factor-A stimulates Snail expression in breast tumor cells: Implications for tumor progression. Exp Cell Res. 314:2448–2453. 2008. View Article : Google Scholar : PubMed/NCBI | |
Bruna A, Darken RS, Rojo F, Ocaña A, Peñuelas S, Arias A, Paris R, Tortosa A, Mora J, Baselga J and Seoane J: High TGFbeta-Smad activity confers poor prognosis in glioma patients and promotes cell proliferation depending on the methylation of the PDGF-B gene. Cancer Cell. 11:147–160. 2007. View Article : Google Scholar : PubMed/NCBI | |
Guo P, Hu B, Gu W, Xu L, Wang D, Huang HJ, Cavenee WK and Cheng SY: Platelet-derived growth factor-B enhances glioma angiogenesis by stimulating vascular endothelial growth factor expression in tumor endothelia and by promoting pericyte recruitment. Am J Pathol. 162:1083–1093. 2003. View Article : Google Scholar : PubMed/NCBI | |
Lamouille S, Connolly E, Smyth JW, Akhurst RJ and Derynck R: TGF-β-induced activation of mTOR complex 2 drives epithelial-mesenchymal transition and cell invasion. J Cell Sci. 125:1259–1273. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kardassis D, Murphy C, Fotsis T, Moustakas A and Stournaras C: Control of transforming growth factor beta signal transduction by small GTPases. FEBS J. 276:2947–2965. 2009. View Article : Google Scholar : PubMed/NCBI | |
Katsuno Y, Lamouille S and Derynck R: TGF-β signaling and epithelial-mesenchymal transition in cancer progression. Curr Opin Oncol. 25:76–84. 2013. View Article : Google Scholar : PubMed/NCBI | |
Goldbrunner RH, Bernstein JJ and Tonn JC: ECM-mediated glioma cell invasion. Microsc Res Tech. 43:250–257. 1998. View Article : Google Scholar : PubMed/NCBI | |
Verrecchia F and Mauviel A: Transforming growth factor-beta signaling through the Smad pathway: Role in extracellular matrix gene expression and regulation. J Invest Dermatol. 118:211–215. 2002. View Article : Google Scholar : PubMed/NCBI | |
Schmid P, Itin P, Cherry G, Bi C and Cox DA: Enhanced expression oftransforming growth factor-beta type I and type II receptors in wound granulation tissue and hypertrophic scar. Am J Pathol. 152:485–493. 1998.PubMed/NCBI | |
Akiyama Y, Jung S, Salhia B, Lee S, Hubbard S, Taylor M, Mainprize T, Akaishi K, van Furth W and Rutka JT: Hyaluronate receptors mediating glioma cell migration and proliferation. J Neurooncol. 53:115–127. 2001. View Article : Google Scholar : PubMed/NCBI | |
Noël A, Gilles C, Bajou K, Devy L, Kebers F, Lewalle JM, Maquoi E, Munaut C, Remacle A and Foidart JM: Emerging roles for proteinasesin cancer. Invasion Metastasis. 17:221–239. 1997.PubMed/NCBI | |
Kleinman HK, Koblinski J, Lee S and Engbring J: Role of basement membrane in tumor growth and metastasis. Surg Oncol Clin N Am. 10:329–338. 2001.PubMed/NCBI | |
Bair EL, Chen ML, McDaniel K, Sekiguchi K, Cress AE, Nagle RB and Bowden GT: Membrane type 1 matrix metalloprotease cleaves laminin-10 and promotes prostate cancer cell migration. Neoplasia. 7:380–389. 2005. View Article : Google Scholar : PubMed/NCBI | |
Ren B, Yee KO, Lawler J and Khosravi-Far R: Regulation of tumor angiogenesis by thrombospondin-1. Biochim Biophys Acta. 1765:178–188. 2006.PubMed/NCBI | |
Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD and Dirks PB: Identification of human brain tumour initiating cells. Nature. 432:396–401. 2004. View Article : Google Scholar : PubMed/NCBI | |
Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD and Rich JN: Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 444:756–760. 2006. View Article : Google Scholar : PubMed/NCBI | |
Schier AF and Talbot WS: Nodal signaling and the zebrafish organizer. Int J Dev Biol. 45:289–297. 2001.PubMed/NCBI | |
Muñoz-Sanjuán I and Brivanlou AH: Neural induction, the default model and embryonic stem cells. Nat Rev Neurosci. 3:271–280. 2002. View Article : Google Scholar : PubMed/NCBI | |
Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, et al: The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 133:704–715. 2008. View Article : Google Scholar : PubMed/NCBI | |
Peñuelas S, Anido J, Prieto-Sánchez RM, Folch G, Barba I, Cuartas I, García-Dorado D, Poca MA, Sahuquillo J, Baselga J and Seoane J: TGF-beta increases glioma-initiating cell self-renewal through the induction of LIF in human glioblastoma. Cancer Cell. 15:315–327. 2009. View Article : Google Scholar : PubMed/NCBI |