1
|
Caughey B and Lansbury PT: Protofibrils,
pores, fibrils, and neurodegeneration: separating the responsible
protein aggregates from the innocent bystanders. Annu Rev Neurosci.
26:267–298. 2003. View Article : Google Scholar : PubMed/NCBI
|
2
|
de la Monte SM and Wands JR: Molecular
indices of oxidative stress and mitochondrial dysfunction occur
early and often progress with severity of Alzheimer's disease. J
Alzheimers Dis. 9:167–181. 2006.PubMed/NCBI
|
3
|
Perry VH and Holmes C: Microglial priming
in neurodegenerative disease. Nat Rev Neurol. 10:217–224. 2014.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Behl C, Davis JB, Lesley R and Schubert D:
Hydrogen peroxide mediates amyloid beta protein toxicity. Cell.
77:817–827. 1994. View Article : Google Scholar : PubMed/NCBI
|
5
|
Manczak M, Anekonda TS, Henson E, Park BS,
Quinn J and Reddy PH: Mitochondria are a direct site of A beta
accumulation in Alzheimer's disease neurons: implications for free
radical generation and oxidative damage in disease progression. Hum
Mol Genet. 15:1437–1449. 2006. View Article : Google Scholar : PubMed/NCBI
|
6
|
Apelt J, Bigl M, Wunderlich P and Schliebs
R: Aging-related increase in oxidative stress correlates with
developmental pattern of beta-secretase activity and beta-amyloid
plaque formation in transgenic Tg2576 mice with Alzheimer-like
pathology. Int J Dev Neurosci. 22:475–484. 2004. View Article : Google Scholar : PubMed/NCBI
|
7
|
De Felice FG, Velasco PT, Lambert MP,
Viola K, Fernandez SJ, Ferreira ST and Klein WL: Abeta oligomers
induce neuronal oxidative stress through an N-methyl-D-aspartate
receptor-dependent mechanism that is blocked by the Alzheimer drug
memantine. J Biol Chem. 282:11590–11601. 2007. View Article : Google Scholar : PubMed/NCBI
|
8
|
Li F, Calingasan NY, Yu F, Mauck WM,
Toidze M, Almeida CG, Takahashi RH, Carlson GA, Flint Beal M, Lin
MT and Gouras GK: Increased plaque burden in brains of APP mutant
MnSOD heterozygous knockout mice. J Neurochem. 89:1308–1312. 2004.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Nishida Y, Yokota T, Takahashi T, Uchihara
T, Jishage K and Mizusawa H: Deletion of vitamin E enhances
phenotype of Alzheimer disease model mouse. Biochem Biophys Res
Commun. 350:530–536. 2006. View Article : Google Scholar : PubMed/NCBI
|
10
|
Chen L, Na R, Gu M, Richardson A and Ran
Q: Lipid peroxidation up-regulates BACE1 expression in vivo: a
possible early event of amyloidogenesis in Alzheimer's disease. J
Neurochem. 107:197–207. 2008. View Article : Google Scholar : PubMed/NCBI
|
11
|
Quiroz-Baez R, Rojas E and Arias C:
Oxidative stress promotes JNK-dependent amyloidogenic processing of
normally expressed human APP by differential modification of
alpha-, beta- and gamma-secretase expression. Neurochem Int.
55:662–670. 2009. View Article : Google Scholar : PubMed/NCBI
|
12
|
Butterfield DA: The 2013 SFRBM discovery
award: selected discoveries from the Butterfield laboratory of
oxidative stress and its sequela in brain in cognitive disorders
exemplified by Alzheimer disease and chemotherapy induced cognitive
impairment. Free Radic Biol Med. 74:157–174. 2014. View Article : Google Scholar : PubMed/NCBI
|
13
|
Lindvall O and Kokaia Z: Stem cells in
human neurodegenerative disorders - time for clinical translation?
J Clin Invest. 120:29–40. 2010. View
Article : Google Scholar : PubMed/NCBI
|
14
|
Lanza C, Morando S, Voci A, Canesi L,
Principato MC, Serpero LD, Mancardi G, Uccelli A and Vergani L:
Neuroprotective mesenchymal stem cells are endowed with a potent
antioxidant effect in vivo. J Neurochem. 110:1674–1684. 2009.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Calió ML, Marinho DS, Ko GM, Ribeiro RR,
Carbonel AF, Oyama LM, Ormanji M, Guirao TP, Calió PL, Reis LA, et
al: Transplantation of bone marrow mesenchymal stem cells decreases
oxidative stress, apoptosis, and hippocampal damage in brain of a
spontaneous stroke model. Free Radic Biol Med. 70:141–154. 2014.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Ko E, Lee KY and Hwang DS: Human umbilical
cord blood-derived mesenchymal stem cells undergo cellular
senescence in response to oxidative stress. Stem Cells Dev.
21:1877–1886. 2012. View Article : Google Scholar : PubMed/NCBI
|
17
|
Tsuji H, Miyoshi S, Ikegami Y, Hida N,
Asada H, Togashi I, Suzuki J, Satake M, Nakamizo H, Tanaka M, et
al: Xenografted human amniotic membrane-derived mesenchymal stem
cells are immunologically tolerated and transdifferentiated into
cardiomyocytes. Circ Res. 106:1613–1623. 2010. View Article : Google Scholar : PubMed/NCBI
|
18
|
Dominici M, Le Blanc K, Mueller I,
Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A,
Prockop Dj and Horwitz E: Minimal criteria for defining multipotent
mesenchymal stromal cells. The International Society for Cellular
Therapy position statement. Cytotherapy. 8:315–317. 2006.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Zhang J, Wu X, Qin C, Qi J, Ma S, Zhang H,
Kong Q, Chen D, Ba D and He W: A novel recombinant adeno-associated
virus vaccine reduces behavioral impairment and beta-amyloid
plaques in a mouse model of Alzheimer's disease. Neurobiol Dis.
14:365–379. 2003. View Article : Google Scholar : PubMed/NCBI
|
20
|
Vorhees CV and Williams MT: Morris water
maze: procedures for assessing spatial and related forms of
learning and memory. Nat Protoc. 1:848–858. 2006. View Article : Google Scholar : PubMed/NCBI
|
21
|
Zhang W, Bai M, Xi Y, Hao J, Liu L, Mao N,
Su C, Miao J and Li Z: Early memory deficits precede plaque
deposition in APPswe/PS1dE9 mice: involvement of oxidative stress
and cholinergic dysfunction. Free Radic Biol Med. 52:1443–1452.
2012. View Article : Google Scholar : PubMed/NCBI
|
22
|
Dong HS, Li L, Song ZH, Tang J, Xu B, Zhai
XW, Sun LL, Zhang P, Li ZB, Pan QJ, et al: Premeiotic fetal murine
germ cells cultured in vitro form typical oocyte-like cells but do
not progress through meiosis. Theriogenology. 72:219–231. 2009.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Hu D, Cao Y, He R, Han N, Liu Z, Miao L
and Yin J: Schizandrin, an antioxidant lignan from Schisandra
chinensis, ameliorates Aβ1-42-induced memory impairment in
mice. Oxid Med Cell Longev. 2012:7217212012. View Article : Google Scholar : PubMed/NCBI
|
24
|
Kuperstein I, Broersen K, Benilova I,
Rozenski J, Jonckheere W, Debulpaep M, Vandersteen A, Segers-Nolten
I, Van Der Werf K, Subramaniam V, et al: Neurotoxicity of
Alzheimer's disease Aβ peptides is induced by small changes in the
Aβ42 to Aβ40 ratio. EMBO J. 29:3408–3420. 2010. View Article : Google Scholar : PubMed/NCBI
|
25
|
Onyango IG and Khan SM: Oxidative stress,
mitochondrial dysfunction, and stress signaling in Alzheimer's
disease. Curr Alzheimer Res. 3:339–349. 2006. View Article : Google Scholar : PubMed/NCBI
|
26
|
Behl C: Oxidative stress in Alzheimer's
disease: implications for prevention and therapy. Subcell Biochem.
38:65–78. 2005. View Article : Google Scholar : PubMed/NCBI
|
27
|
Khan RA, Khan MR and Sahreen S: Protective
effects of rutin against potassium bromate induced nephrotoxicity
in rats. BMC Complement Altern Med. 12:2042012. View Article : Google Scholar : PubMed/NCBI
|
28
|
Chauhan V and Chauhan A: Oxidative stress
in Alzheimer's disease. Pathophysiology. 13:195–208. 2006.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Sakuragawa N, Tohyama J and Yamamoto H:
Immunostaining of human amniotic epithelial cells: possible use as
a transgene carrier in gene therapy for inborn errors of
metabolism. Cell Transplant. 4:343–346. 1995. View Article : Google Scholar : PubMed/NCBI
|
30
|
Kakishita K, Elwan MA, Nakao N, Itakura T
and Sakuragawa N: Human amniotic epithelial cells produce dopamine
and survive after implantation into the striatum of a rat model of
Parkinson's disease: a potential source of donor for
transplantation therapy. Exp Neurol. 165:27–34. 2000. View Article : Google Scholar : PubMed/NCBI
|
31
|
Alviano F, Fossati V, Marchionni C,
Arpinati M, Bonsi L, Franchina M, Lanzoni G, Cantoni S, Cavallini
C, Bianchi F, et al: Term amniotic membrane is a high throughput
source for multipotent mesenchymal stem cells with the ability to
differentiate into endothelial cells in vitro. BMC Dev Biol.
7:112007. View Article : Google Scholar : PubMed/NCBI
|
32
|
Klein WL: Synaptotoxic amyloid-β
oligomers: a molecular basis for the cause, diagnosis, and
treatment of Alzheimer's disease? J Alzheimers Dis. (33 Suppl 1):
S49–S65. 2013.PubMed/NCBI
|
33
|
Kumar-Singh S, Theuns J, Van Broeck B,
Pirici D, Vennekens K, Corsmit E, Cruts M, Dermaut B, Wang R and
Van Broeckhoven C: Mean age-of-onset of familial alzheimer disease
caused by presenilin mutations correlates with both increased
Abeta42 and decreased Abeta40. Hum Mutat. 27:686–695. 2006.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Xue S, Chen C, Dong W, Hui G, Liu T and
Guo L: Therapeutic effects of human amniotic epithelial cell
transplantation on double-transgenic mice co-expressing APPswe and
PS1ΔE9-deleted genes. Sci China Life Sci. 55:132–140. 2012.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Kim KS, Kim HS, Park JM, Kim HW, Park MK,
Lee HS, Lim DS, Lee TH, Chopp M and Moon J: Long-term
immunomodulatory effect of amniotic stem cells in an Alzheimer's
disease model. Neurobiol Aging. 34:2408–2420. 2013. View Article : Google Scholar : PubMed/NCBI
|
36
|
Camilleri A, Zarb C, Caruana M, Ostermeier
U, Ghio S, Högen T, Schmidt F, Giese A and Vassallo N:
Mitochondrial membrane permeabilisation by amyloid aggregates and
protection by polyphenols. Biochim Biophys Acta. 1828:2532–2543.
2013. View Article : Google Scholar : PubMed/NCBI
|
37
|
Zhao Y and Zhao B: Natural antioxidants in
prevention and management of Alzheimer's disease. Front Biosci
(Elite Ed). 4:794–808. 2012. View
Article : Google Scholar : PubMed/NCBI
|