1
|
Akhavan-Niaki H and Samadani AA: DNA
methylation and cancer development: Molecular mechanism. Cell
Biochem Biophys. 67:501–513. 2013. View Article : Google Scholar : PubMed/NCBI
|
2
|
Bestor TH: The DNA methyltransferases of
mammals. Hum Mol Genet. 9:2395–2402. 2000. View Article : Google Scholar : PubMed/NCBI
|
3
|
Mizuno S, Chijiwa T, Okamura T, Akashi K,
Fukumaki Y, Niho Y and Sasaki H: Expression of DNA
methyltransferases DNMT1, 3A and 3B in normal hematopoiesis and in
acute and chronic myelogenous leukemia. Blood. 97:1172–1179. 2001.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Amara K, Ziadi S, Hachana M, Soltani N,
Korbi S and Trimeche M: DNA methyltransferase DNMT3b protein
overexpression as a prognostic factor in patients with diffuse
large B-cell lymphomas. Cancer Sci. 101:1722–1730. 2010. View Article : Google Scholar : PubMed/NCBI
|
5
|
Oue N, Kuraoka K, Kuniyasu H, Yokozaki H,
Wakikawa A, Matsusaki K and Yasui W: DNA methylation status of
hMLH1, p16 (INK4a) and CDH1 is not associated with mRNA expression
levels of DNA methyltransferase and DNA demethylase in gastric
carcinomas. Oncol Rep. 8:1085–1089. 2001.PubMed/NCBI
|
6
|
Sato M, Horio Y, Sekido Y, Minna JD,
Shimokata K and Hasegawa Y: The expression of DNA
methyltransferases and methyl-CpG-binding proteins is not
associated with the methylation status of p14(ARF), p16(INK4a) and
RASSF1A in human lung cancer cell lines. Oncogene. 21:4822–4829.
2002. View Article : Google Scholar : PubMed/NCBI
|
7
|
Park HJ, Yu E and Shim YH: DNA
methyltransferase expression and DNA hypermethylation in human
hepatocellular carcinoma. Cancer Lett. 233:271–278. 2006.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Hagemann S, Kuck D, Stresemann C, Prinz F,
Brueckner B, Mund C, Mumberg D and Sommer A: Antiproliferative
effects of DNA methyltransferase 3B depletion are not associated
with DNA demethylation. PloS One. 7:e361252012. View Article : Google Scholar : PubMed/NCBI
|
9
|
Strathdee G: Epigenetic versus genetic
alterations in the inactivation of E-cadherin. Semin Cancer Biol.
12:373–379. 2002. View Article : Google Scholar : PubMed/NCBI
|
10
|
Rodriguez FJ, Lewis-Tuffin LJ and
Anastasiadis PZ: E-cadherin's dark side: Possible role in tumor
progression. Biochim Biophys Acta. 1826:23–31. 2012.PubMed/NCBI
|
11
|
Andreeva AV and Kutuzov MA: Cadherin 13 in
cancer. Genes Chromosomes Cancer. 49:775–790. 2010.PubMed/NCBI
|
12
|
Ogama Y, Ouchida M, Yoshino T, Ito S,
Takimoto H, Shiote Y, Ishimaru F, Harada M, Tanimoto M and Shimizu
K: Prevalent hyper-methylation of the CDH13 gene promoter in
malignant B cell lymphomas. Int J Oncol. 25:685–691.
2004.PubMed/NCBI
|
13
|
Rocks N, Paulissen G, El Hour M, Quesada
F, Crahay C, Gueders M, Foidart JM, Noel A and Cataldo D: Emerging
roles of ADAM and ADAMTS metalloproteinases in cancer. Biochimie.
90:369–379. 2008. View Article : Google Scholar : PubMed/NCBI
|
14
|
Porter S, Scott SD, Sassoon EM, Williams
MR, Jones JL, Girling AC, Ball RY and Edwards DR: Dysregulated
expression of adamalysin-thrombospondin genes in human breast
carcinoma. Clin Cancer Res. 10:2429–2440. 2004. View Article : Google Scholar : PubMed/NCBI
|
15
|
Jin H, Wang X, Ying J, Wong AH, Li H, Lee
KY, Srivastava G, Chan AT, Yeo W, Ma BB, et al: Epigenetic
identification of ADAMTS18 as a novel 16q23.1 tumor suppressor
frequently silenced in esophageal, nasopharyngeal and multiple
other carcinomas. Oncogene. 26:7490–7498. 2007. View Article : Google Scholar : PubMed/NCBI
|
16
|
Knudson AG: Two genetic hits (more or
less) to cancer. Nat Rev Cancer. 1:157–162. 2001. View Article : Google Scholar : PubMed/NCBI
|
17
|
Jones PA and Baylin SB: The fundamental
role of epigenetic events in cancer. Nat Rev Genet. 3:415–428.
2002.PubMed/NCBI
|
18
|
Swerdlow SH, Campo E, Harri NL, Jaffe ES,
Pileri SA, Stain H, Thiele J and Vardiman JW: WHO Classification of
Tumours of Haematopoietic and Lymphoid Tissues. 2. 4th. IARC Press;
Lyon: 2008
|
19
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) Method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Sakai M, Hibi K, Koshikawa K, Inoue S,
Takeda S, Kaneko T and Nakao A: Frequent promoter methylation and
gene silencing of CDH13 in pancreatic cancer. Cancer Sci.
95:588–591. 2004. View Article : Google Scholar : PubMed/NCBI
|
21
|
Asiaf A, Ahmad ST, Aziz SA, Malik AA,
Rasool Z, Masood A and Zargar MA: Loss of expression and aberrant
methylation of the CDH1 (E-cadherin) gene in breast cancer patients
from Kashmir. Asian Pac J Cancer Prev. 15:6397–6403. 2014.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Karpova MB, Schoumans J, Ernberg I, Henter
JI, Nordenskjold M and Fadeel B: Raji revisited: Cytogenetics of
the original Burkitt's lymphoma cell line. Leukemia. 19:159–161.
2005.PubMed/NCBI
|
23
|
Uchida Y, Miyazawa K, Yaguchi M, Gotoh A,
Iwase O, Ohyashiki K and Toyama K: Establishment of a novel
B-lymphoma cell line, CTB-1, with strong Pas antigen expression
having chromosomal translocation (14;22). Int J Oncol.
10:1103–1107. 1997.PubMed/NCBI
|
24
|
Inokuchi K, Abo J, Takahashi H, Miyake K,
Inokuchi S, Dan K and Nomura T: Establishment and characterization
of a villous lymphoma cell line from splenic B-cell lymphoma. Leuk
Res. 19:817–822. 1995. View Article : Google Scholar : PubMed/NCBI
|
25
|
Jeong DH, Youm MY, Kim YN, Lee KB, Sung
MS, Yoon HK and Kim KT: Promoter methylation of p16, DAPK, CDH1 and
TIMP-3 genes in cervical cancer: Correlation with clinicopathologic
characteristics. Int J Gynecol Cancer. 16:1234–1240. 2006.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Harbst K, Staaf J, Måsbäck A, Olsson H,
Ingvar C, Vallon-Christersson J, Ringnér M, Borg A and Jönsson G:
Multiple metastases from cutaneous malignant melanoma patients may
display heterogeneous genomic and epigenomic patterns. Melanoma
Res. 20:381–391. 2010.PubMed/NCBI
|
27
|
Kim DS, Kim MJ, Lee JY, Kim YZ, Kim EJ and
Park JY: Aberrant methylation of E-cadherin and H-cadherin genes in
nonsmall cell lung cancer and its relation to clinicopathologic
features. Cancer. 110:2785–2792. 2007. View Article : Google Scholar : PubMed/NCBI
|
28
|
Matsumura T, Makino R and Mitamura K:
Frequent down-regulation of E-cadherin by genetic and epigenetic
changes in the malignant progression of hepatocellular carcinomas.
Clin Cancer Res. 7:594–599. 2001.PubMed/NCBI
|
29
|
Barber M, Murrell A, Ito Y, Maia AT,
Hyland S, Oliveira C, Save V, Carneiro F, Paterson AL, Grehan N, et
al: Mechanisms and sequelae of E-cadherin silencing in hereditary
diffuse gastric cancer. J Pathol. 216:295–306. 2008. View Article : Google Scholar : PubMed/NCBI
|
30
|
Ling ZQ, Li P, Ge MH, Zhao X, Hu FJ, Fang
XH, Dong ZM and Mao WM: Hypermethylation-modulated down-regulation
of CDH1 expression contributes to the progression of esophageal
cancer. Int J Mol Med. 27:625–635. 2011. View Article : Google Scholar : PubMed/NCBI
|
31
|
Qian ZR, Sano T, Yoshimoto K, Asa SL,
Yamada S, Mizusawa N and Kudo E: Tumor-specific downregulation and
methylation of the CDH13 (H-cadherin) and CDH1 (E-cadherin) genes
correlate with aggressiveness of human pituitary adenomas. Mod
Pathol. 20:1269–1277. 2007. View Article : Google Scholar : PubMed/NCBI
|
32
|
Ling ZQ, Sugihara H, Tatsuta T, Mukaisho K
and Hattori T: Optimization of comparative expressed sequence
hybridization for genome-wide expression profiling at chromosome
level. Cancer Genet Cytogenet. 175:144–153. 2007. View Article : Google Scholar : PubMed/NCBI
|
33
|
Murgo AJ: Innovative approaches to the
clinical development of DNA methylation inhibitors as epigenetic
remodeling drugs. Semin Oncol. 32:458–464. 2005. View Article : Google Scholar : PubMed/NCBI
|
34
|
Eads CA, Danenberg KD, Kawakami K, Saltz
LB, Danenberg PV and Laird PW: CpG island hypermethylation in human
colorectal tumors is not associated with DNA methyltransferase
overexpression. Cancer Res. 59:2302–2306. 1999.PubMed/NCBI
|
35
|
Saito Y, Kanai Y, Sakamoto M, Saito H,
Ishii H and Hirohashi S: Expression of mRNA for DNA
methyltransferases and methyl-CpG-binding proteins and DNA
methylation status on CpG islands and pericentromeric satellite
regions during human hepatocarcinogenesis. Hepatology. 33:561–568.
2001. View Article : Google Scholar : PubMed/NCBI
|
36
|
Tycko B: Epigenetic gene silencing in
cancer. J Clin Invest. 105:401–407. 2000. View Article : Google Scholar : PubMed/NCBI
|
37
|
Luo Y and Radice GL: N-cadherin acts
upstream of VE-cadherin in controlling vascular morphogenesis. J
Cell Biol. 169:29–34. 2005. View Article : Google Scholar : PubMed/NCBI
|
38
|
Rezaei M, Friedrich K, Wielockx B,
Kuzmanov A, Kettelhake A, Labelle M, Schnittler H, Baretton G and
Breier G: Interplay between neural-cadherin and vascular
endothelial-cadherin in breast cancer progression. Breast Cancer
Res. 14:R1542012. View Article : Google Scholar : PubMed/NCBI
|
39
|
Maretzky T, Reiss K, Ludwig A, Buchholz J,
Scholz F, Proksch E, de Strooper B, Hartmann D and Saftig P: ADAM10
mediates E-cadherin shedding and regulates epithelial cell-cell
adhesion, migration, and beta-catenin translocation. Proc Natl Acad
Sci USA. 102:9182–9187. 2005. View Article : Google Scholar : PubMed/NCBI
|
40
|
Najy AJ, Day KC and Day ML: The ectodomain
shedding of E-cadherin by ADAM15 supports ErbB receptor activation.
J Biol Chem. 283:18393–18401. 2008. View Article : Google Scholar : PubMed/NCBI
|