1
|
Wang VE, Grandis JR and Ko AH: New
strategies in esophageal carcinoma: Translational insights from
signaling pathways and immune checkpoints. Clin Cancer Res. Jul
01–2016.(Epub ahead of print). View Article : Google Scholar
|
2
|
Torre LA, Bray F, Siegel RL, Ferlay J,
Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA
Cancer J Clin. 65:87–108. 2015. View Article : Google Scholar : PubMed/NCBI
|
3
|
National Cancer Institute, . Cancer
Statistics: Statistics at a Glance: The Burden of Cancer in the
United States. http://www.cancer.gov/statisticsMarch
14–2016
|
4
|
Bombardelli L and Berns A: The steady
progress of targeted therapies, promising advances for lung cancer.
Ecancermedicalscience. 10:6382016. View Article : Google Scholar : PubMed/NCBI
|
5
|
Viktorsson K, Lewensohn R and Zhivotovsky
B: Systems biology approaches to develop innovative strategies for
lung cancer therapy. Cell Death Dis. 5:e12602014. View Article : Google Scholar : PubMed/NCBI
|
6
|
Morgensztern D, Campo MJ, Dahlberg SE,
Doebele RC, Garon E, Gerber DE, Goldberg SB, Hammerman PS, Heist
RS, Hensing T, et al: Molecularly targeted therapies in
non-small-cell lung cancer annual update 2014. J Thorac Oncol.
10(Suppl 1): S1–S63. 2015. View Article : Google Scholar : PubMed/NCBI
|
7
|
Hanahan D and Weinberg RA: The hallmarks
of cancer. Cell. 100:57–70. 2000. View Article : Google Scholar : PubMed/NCBI
|
8
|
Hanahan D and Weinberg RA: Hallmarks of
cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI
|
9
|
Weinberg RA: The Biology of Cancer. Sigrid
Masson and Alan Grose: Garland Science; New York, NY: 2007
|
10
|
De Palma M and Hanahan D: The biology of
personalized cancer medicine: Facing individual complexities
underlying hallmark capabilities. Mol Oncol. 6:111–127. 2012.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Hanahan D: Rethinking the war on cancer.
Lancet. 383:558–563. 2014. View Article : Google Scholar : PubMed/NCBI
|
12
|
Rajagopalan H and Lengauer C: Aneuploidy
and cancer. Nature. 432:338–341. 2004. View Article : Google Scholar : PubMed/NCBI
|
13
|
Hoeijmakers JH: Genome maintenance
mechanisms for preventing cancer. Nature. 411:366–374. 2001.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Jackson SP and Bartek J: The DNA-damage
response in human biology and disease. Nature. 461:1071–1078. 2009.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Friedberg EC, McDaniel LD and Schultz RA:
The role of endogenous and exogenous DNA damage and mutagenesis.
Curr Opin Genet Dev. 14:5–10. 2004. View Article : Google Scholar : PubMed/NCBI
|
16
|
Kastan MB: DNA damage responses:
Mechanisms and roles in human disease: 2007 G.H.A. Clowes Memorial
Award Lecture. Mol Cancer Res. 6:517–524. 2008. View Article : Google Scholar : PubMed/NCBI
|
17
|
Bensimon A, Aebersold R and Shiloh Y:
Beyond ATM: The protein kinase landscape of the DNA damage
response. FEBS Lett. 585:1625–1639. 2011. View Article : Google Scholar : PubMed/NCBI
|
18
|
Khanna KK and Jackson SP: DNA
double-strand breaks: Signaling, repair and the cancer connection.
Nat Genet. 27:247–254. 2001. View
Article : Google Scholar : PubMed/NCBI
|
19
|
Ciccia A and Elledge SJ: The DNA damage
response: Making it safe to play with knives. Mol Cell. 40:179–204.
2010. View Article : Google Scholar : PubMed/NCBI
|
20
|
Giglia-Mari G, Zotter A and Vermeulen W:
DNA damage response. Cold Spring Harb Perspect Biol. 3:a0007452011.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Harper JW and Elledge SJ: The DNA damage
response: Ten years after. Mol Cell. 28:739–745. 2007. View Article : Google Scholar : PubMed/NCBI
|
22
|
Campisi J and d'Adda di Fagagna F:
Cellular senescence: When bad things happen to good cells. Nat Rev
Mol Cell Biol. 8:729–740. 2007. View
Article : Google Scholar : PubMed/NCBI
|
23
|
Halazonetis TD, Gorgoulis VG and Bartek J:
An oncogene-induced DNA damage model for cancer development.
Science. 319:1352–1355. 2008. View Article : Google Scholar : PubMed/NCBI
|
24
|
Aparicio T, Baer R and Gautier J: DNA
double-strand break repair pathway choice and cancer. DNA Repair
(Amst). 19:169–175. 2014. View Article : Google Scholar : PubMed/NCBI
|
25
|
Negrini S, Gorgoulis VG and Halazonetis
TD: Genomic instability-an evolving hallmark of cancer. Nat Rev Mol
Cell Biol. 11:220–228. 2010. View
Article : Google Scholar : PubMed/NCBI
|
26
|
Aguilera A and Gómez-González B: Genome
instability: A mechanistic view of its causes and consequences. Nat
Rev Genet. 9:204–217. 2008. View
Article : Google Scholar : PubMed/NCBI
|
27
|
Bartek J, Bartkova J and Lukas J: DNA
damage signalling guards against activated oncogenes and tumour
progression. Oncogene. 26:7773–7779. 2007. View Article : Google Scholar : PubMed/NCBI
|
28
|
Lehmann AR: DNA repair-deficient diseases,
xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy.
Biochimie. 85:1101–1111. 2003. View Article : Google Scholar : PubMed/NCBI
|
29
|
Rotman G and Shiloh Y: ATM: A mediator of
multiple responses to genotoxic stress. Oncogene. 18:6135–6144.
1999. View Article : Google Scholar : PubMed/NCBI
|
30
|
Tauchi H, Matsuura S, Kobayashi J,
Sakamoto S and Komatsu K: Nijmegen breakage syndrome gene, NBS1,
and molecular links to factors for genome stability. Oncogene.
21:8967–8980. 2002. View Article : Google Scholar : PubMed/NCBI
|
31
|
Lavin MF: Ataxia-telangiectasia: From a
rare disorder to a paradigm for cell signalling and cancer. Nat Rev
Mol Cell Biol. 9:759–769. 2008. View
Article : Google Scholar : PubMed/NCBI
|
32
|
Cerbinskaite A, Mukhopadhyay A, Plummer
ER, Curtin NJ and Edmondson RJ: Defective homologous recombination
in human cancers. Cancer Treat Rev. 38:89–100. 2012. View Article : Google Scholar : PubMed/NCBI
|
33
|
Shen J and Loeb LA: Unwinding the
molecular basis of the Werner syndrome. Mech Ageing Dev.
122:921–944. 2001. View Article : Google Scholar : PubMed/NCBI
|
34
|
Al-Ejeh F, Kumar R, Wiegmans A, Lakhani
SR, Brown MP and Khanna KK: Harnessing the complexity of DNA-damage
response pathways to improve cancer treatment outcomes. Oncogene.
29:6085–6098. 2010. View Article : Google Scholar : PubMed/NCBI
|
35
|
Curtin NJ: DNA repair dysregulation from
cancer driver to therapeutic target. Nat Rev Cancer. 12:801–817.
2012. View
Article : Google Scholar : PubMed/NCBI
|
36
|
Darzynkiewicz Z, Traganos F and Wlodkowic
D: Impaired DNA damage response-an Achilles' heel sensitizing
cancer to chemotherapy and radiotherapy. Eur J Pharmacol.
625:143–150. 2009. View Article : Google Scholar : PubMed/NCBI
|
37
|
Damia G and D'Incalci M: Targeting DNA
repair as a promising approach in cancer therapy. Eur J Cancer.
43:1791–1801. 2007. View Article : Google Scholar : PubMed/NCBI
|
38
|
O'Connor MJ, Martin NM and Smith GC:
Targeted cancer therapies based on the inhibition of DNA strand
break repair. Oncogene. 26:7816–7824. 2007. View Article : Google Scholar : PubMed/NCBI
|
39
|
Helleday T, Petermann E, Lundin C, Hodgson
B and Sharma RA: DNA repair pathways as targets for cancer therapy.
Nat Rev Cancer. 8:193–204. 2008. View
Article : Google Scholar : PubMed/NCBI
|
40
|
Soussi T: p53 alterations in human cancer:
More questions than answers. Oncogene. 26:2145–2156. 2007.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Bartek J and Lukas J: Pathways governing
G1/S transition and their response to DNA damage. FEBS Lett.
490:117–122. 2001. View Article : Google Scholar : PubMed/NCBI
|
42
|
Asghar U, Witkiewicz AK, Turner NC and
Knudsen ES: The history and future of targeting cyclin-dependent
kinases in cancer therapy. Nat Rev Drug Discov. 14:130–146. 2015.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Brooks K, Oakes V, Edwards B, Ranall M,
Leo P, Pavey S, Pinder A, Beamish H, Mukhopadhyay P, Lambie D, et
al: A potent Chk1 inhibitor is selectively cytotoxic in melanomas
with high levels of replicative stress. Oncogene. 32:788–796. 2013.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Sarkaria JN, Busby EC, Tibbetts RS, Roos
P, Taya Y, Karnitz LM and Abraham RT: Inhibition of ATM and ATR
kinase activities by the radiosensitizing agent, caffeine. Cancer
Res. 59:4375–4382. 1999.PubMed/NCBI
|
45
|
Garrett MD and Collins I: Anticancer
therapy with checkpoint inhibitors: What, where and when? Trends
Pharmacol Sci. 32:308–316. 2011. View Article : Google Scholar : PubMed/NCBI
|
46
|
Chabner BA and Roberts TG Jr: Timeline:
Chemotherapy and the war on cancer. Nat Rev Cancer. 5:65–72. 2005.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Haince JF, Rouleau M, Hendzel MJ, Masson
JY and Poirier GG: Targeting poly(ADP-ribosyl)ation: A promising
approach in cancer therapy. Trends Mol Med. 11:456–463. 2005.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Jagtap P and Szabó C: Poly(ADP-ribose)
polymerase and the therapeutic effects of its inhibitors. Nat Rev
Drug Discov. 4:421–440. 2005. View
Article : Google Scholar : PubMed/NCBI
|
49
|
Sandhu SK, Yap TA and de Bono JS:
Poly(ADP-ribose) polymerase inhibitors in cancer treatment: A
clinical perspective. Eur J Cancer. 46:9–20. 2010. View Article : Google Scholar : PubMed/NCBI
|
50
|
Helleday T, Bryant HE and Schultz N:
Poly(ADP-ribose) polymerase (PARP-1) in homologous recombination
and as a target for cancer therapy. Cell Cycle. 4:1176–1178. 2005.
View Article : Google Scholar : PubMed/NCBI
|
51
|
Turner NC, Lord CJ, Iorns E, Brough R,
Swift S, Elliott R, Rayter S, Tutt AN and Ashworth A: A synthetic
lethal siRNA screen identifying genes mediating sensitivity to a
PARP inhibitor. EMBO J. 27:1368–1377. 2008. View Article : Google Scholar : PubMed/NCBI
|
52
|
Boulton S, Kyle S and Durkacz BW:
Interactive effects of inhibitors of poly(ADP-ribose) polymerase
and DNA-dependent protein kinase on cellular responses to DNA
damage. Carcinogenesis. 20:199–203. 1999. View Article : Google Scholar : PubMed/NCBI
|
53
|
Davidson D, Amrein L, Panasci L and Aloyz
R: Small molecules, inhibitors of DNA-PK, targeting DNA repair, and
beyond. Front Pharmacol. 4:52013. View Article : Google Scholar : PubMed/NCBI
|
54
|
Salles B, Calsou P, Frit P and Muller C:
The DNA repair complex DNA-PK, a pharmacological target in cancer
chemotherapy and radiotherapy. Pathol Biol (Paris). 54:185–193.
2006. View Article : Google Scholar : PubMed/NCBI
|
55
|
Kashishian A, Douangpanya H, Clark D,
Schlachter ST, Eary CT, Schiro JG, Huang H, Burgess LE, Kesicki EA
and Halbrook J: DNA-dependent protein kinase inhibitors as drug
candidates for the treatment of cancer. Mol Cancer Ther.
2:1257–1264. 2003.PubMed/NCBI
|
56
|
Leahy JJ, Golding BT, Griffin RJ,
Hardcastle IR, Richardson C, Rigoreau L and Smith GC:
Identification of a highly potent and selective DNA-dependent
protein kinase (DNA-PK) inhibitor (NU7441) by screening of
chromenone libraries. Bioorg Med Chem Lett. 14:6083–6087. 2004.
View Article : Google Scholar : PubMed/NCBI
|
57
|
Willmore E, de Caux S, Sunter NJ, Tilby
MJ, Jackson GH, Austin CA and Durkacz BW: A novel DNA-dependent
protein kinase inhibitor, NU7026, potentiates the cytotoxicity of
topoisomerase II poisons used in the treatment of leukemia. Blood.
103:4659–4665. 2004. View Article : Google Scholar : PubMed/NCBI
|
58
|
Quanz M, Chassoux D, Berthault N, Agrario
C, Sun JS and Dutreix M: Hyperactivation of DNA-PK by double-strand
break mimicking molecules disorganizes DNA damage response. PLoS
One. 4:e62982009. View Article : Google Scholar : PubMed/NCBI
|
59
|
Rodríguez-Paredes M and Esteller M: Cancer
epigenetics reaches mainstream oncology. Nat Med. 17:330–339. 2011.
View Article : Google Scholar : PubMed/NCBI
|
60
|
Dobbin MM, Madabhushi R, Pan L, Chen Y,
Kim D, Gao J, Ahanonu B, Pao PC, Qiu Y, Zhao Y, et al: SIRT1
collaborates with ATM and HDAC1 to maintain genomic stability in
neurons. Nat Neurosci. 16:1008–1015. 2013. View Article : Google Scholar : PubMed/NCBI
|
61
|
McCord RA, Michishita E, Hong T, Berber E,
Boxer LD, Kusumoto R, Guan S, Shi X, Gozani O, Burlingame AL, et
al: SIRT6 stabilizes DNA-dependent protein kinase at chromatin for
DNA double-strand break repair. Aging (Albany NY). 1:109–121. 2009.
View Article : Google Scholar : PubMed/NCBI
|
62
|
Miller KM, Tjeertes JV, Coates J, Legube
G, Polo SE, Britton S and Jackson SP: Human HDAC1 and HDAC2
function in the DNA-damage response to promote DNA nonhomologous
end-joining. Nat Struct Mol Biol. 17:1144–1151. 2010. View Article : Google Scholar : PubMed/NCBI
|
63
|
Thurn KT, Thomas S, Moore A and Munster
PN: Rational therapeutic combinations with histone deacetylase
inhibitors for the treatment of cancer. Future Oncol. 7:263–283.
2011. View Article : Google Scholar : PubMed/NCBI
|
64
|
Zeller C and Brown R: Therapeutic
modulation of epigenetic drivers of drug resistance in ovarian
cancer. Ther Adv Med Oncol. 2:319–329. 2010. View Article : Google Scholar : PubMed/NCBI
|