1
|
Siegel R, Naishadham D and Jemal A: Cancer
statistics, 2012. CA Cancer J Clin. 62:10–29. 2012. View Article : Google Scholar : PubMed/NCBI
|
2
|
Sy SM, Wong N, Lee TW, et al: Distinct
patterns of genetic alterations in adenocarcinoma and squamous cell
carcinoma of the lung. Eur J Cancer. 40:1082–1094. 2004. View Article : Google Scholar : PubMed/NCBI
|
3
|
Arriagada R, Bergman B, Dunant A, Le
Chevalier T, Pignon JP and Vansteenkiste J: International Adjuvant
Lung Cancer Trial Collaborative Group: Cisplatin-based adjuvant
chemotherapy in patients with completely resected non-small-cell
lung cancer. N Engl J Med. 350:351–360. 2004. View Article : Google Scholar : PubMed/NCBI
|
4
|
Bruno A, Focaccetti C, Pagani A, et al:
The proangiogenic phenotype of natural killer cells in patients
with non-small cell lung cancer. Neoplasia. 15:133–142. 2013.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Scott WJ, Howington J, Feigenberg S,
Movsas B and Pisters K: Treatment of non-small cell lung cancer
stage I and stage II: ACCP evidence-based clinical practice
guidelines (2nd edition). Chest 132 Suppl. 3:234–242. 2007.
View Article : Google Scholar
|
6
|
Haupt Y, Alexander WS, Barri G, Klinken SP
and Adams JM: Novel zinc finger gene implicated as myc collaborator
by retrovirally accelerated lymphomagenesis in E mu-myc transgenic
mice. Cell. 65:753–763. 1991. View Article : Google Scholar : PubMed/NCBI
|
7
|
van Lohuizen M, Verbeek S, Scheijen B,
Wientjens E, van der Gulden H and Berns A: Identification of
cooperating oncogenes in E mu-myc transgenic mice by provirus
tagging. Cell. 65:737–752. 1991. View Article : Google Scholar : PubMed/NCBI
|
8
|
van der Lugt NM, Domen J, Linders K, et
al: Posterior transformation, neurological abnormalities and severe
hematopoietic defects in mice with a targeted deletion of the bmi-1
proto-oncogene. Genes Dev. 8:757–769. 1994. View Article : Google Scholar : PubMed/NCBI
|
9
|
Satijn DP and Otte AP: RING1 interacts
with multiple polycomb-group proteins and displays tumorigenic
activity. Mol Cell Biol. 19:57–68. 1999. View Article : Google Scholar : PubMed/NCBI
|
10
|
van Kemenade FJ, Raaphorst FM, Blokzijl T,
et al: Coexpression of BMI-1 and EZH2 polycomb-group proteins is
associated with cycling cells and degree of malignancy in B-cell
non-Hodgkin lymphoma. Blood. 97:3896–3901. 2001. View Article : Google Scholar : PubMed/NCBI
|
11
|
Kim JH, Yoon SY, Jeong SH, et al:
Overexpression of Bmi-1 oncoprotein correlates with axillary lymph
node metastases in invasive ductal breast cancer. Breast.
13:383–388. 2004. View Article : Google Scholar : PubMed/NCBI
|
12
|
Yonemitsu Y, Imazeki F, Chiba T, et al:
Distinct expression of polycomb group proteins EZH2 and BMI1 in
hepatocellular carcinoma. Hum Pathol. 40:1304–1311. 2009.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Li W, Li Y, Tan Y, Ma K and Cui J: Bmi-1
is critical for the proliferation and invasiveness of gastric
carcinoma cells. J Gastroenterol Hepatol. 25:568–575. 2010.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Li DW, Tang HM, Fan JW, et al: Expression
level of Bmi-1 oncoprotein is associated with progression and
prognosis in colon cancer. J Cancer Res Clin Oncol. 136:997–1006.
2010. View Article : Google Scholar : PubMed/NCBI
|
15
|
Chen H, Zhou L, Wan G, Dou T and Tian J:
BMI1 promotes the progression of laryngeal squamous cell carcinoma.
Oral Oncol. 47:472–481. 2011. View Article : Google Scholar : PubMed/NCBI
|
16
|
Tong YQ, Liu B, Zheng HY, et al: BMI-1
autoantibody as a new potential biomarker for cervical carcinoma.
PLoS One. 6:e278042011. View Article : Google Scholar : PubMed/NCBI
|
17
|
Choy B, Bandla S, Xia Y, et al:
Clinicopathologic characteristics of high expression of Bmi-1 in
esophageal adenocarcinoma and squamous cell carcinoma. BMC
Gastroenterol. 12:1462012. View Article : Google Scholar : PubMed/NCBI
|
18
|
Xin T, Zhang FB, Sui GJ and Jin XM: Bmi-1
siRNA inhibited ovarian cancer cell line growth and decreased
telomerase activity. Br J Biomed Sci. 69:62–66. 2012.PubMed/NCBI
|
19
|
Vonlanthen S, Heighway J, Altermatt HJ, et
al: The bmi-1 oncoprotein is differentially expressed in non-small
cell lung cancer and correlates with INK4A-ARF locus expression. Br
J Cancer. 84:1372–1376. 2001. View Article : Google Scholar : PubMed/NCBI
|
20
|
Breuer RH, Snijders PJ, Smit EF, et al:
Increased expression of the EZH2 polycomb group gene in
BMI-1-positive neoplastic cells during bronchial carcinogenesis.
Neoplasia. 6:736–743. 2004. View Article : Google Scholar : PubMed/NCBI
|
21
|
Breuer RH, Snijders PJ, Sutedja GT, et al:
Expression of the p16 (INK4a) gene product, methylation of the p16
(INK4a) promoter region and expression of the polycomb-group gene
BMI-1 in squamous cell lung carcinoma and premalignant
endobronchial lesions. Lung Cancer. 48:299–306. 2005. View Article : Google Scholar : PubMed/NCBI
|
22
|
Vrzalikova K, Skarda J, Ehrmann J, et al:
Prognostic value of Bmi-1 oncoprotein expression in NSCLC patients:
a tissue microarray study. J Cancer Res Clin Oncol. 134:1037–1042.
2008. View Article : Google Scholar : PubMed/NCBI
|
23
|
Zhang XY, Dong QG, Huang JS, et al: The
expression of stem cell-related indicators as a prognostic factor
in human lung adenocarcinoma. J Surg Oncol. 102:856–862. 2010.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Lee MO, Lee HJ, Kim MA, et al: p16Ink4a
suppression of lung adenocarcinoma by Bmi-1 in the presence of p38
activation. J Thorac Oncol. 6:423–431. 2011. View Article : Google Scholar : PubMed/NCBI
|
25
|
Hu J, Liu YL, Piao SL, Yang DD, Yang YM
and Cai L: Expression patterns of USP22 and potential targets
BMI-1, PTEN, p-AKT in non-small-cell lung cancer. Lung Cancer.
77:593–599. 2012. View Article : Google Scholar : PubMed/NCBI
|
26
|
Huang J, Qiu Y, Chen G, Huang L and He J:
The relationship between Bmi-1 and the epithelial-mesenchymal
transition in lung squamous cell carcinoma. Med Oncol.
29:1606–1613. 2012. View Article : Google Scholar : PubMed/NCBI
|
27
|
Meng X, Wang Y, Zheng X, et al:
shRNA-mediated knockdown of Bmi-1 inhibit lung adenocarcinoma cell
migration and metastasis. Lung Cancer. 77:24–30. 2012. View Article : Google Scholar : PubMed/NCBI
|
28
|
Zhang X, Sun J, Wang H, et al: IGF-1R and
Bmi-1 expressions in lung adenocarcinoma and their
clinicopathologic and prognostic significance. Tumour Biol.
35:739–745. 2014. View Article : Google Scholar : PubMed/NCBI
|
29
|
Hiratsuka S, Nakamura K, Iwai S, et al:
MMP9 induction by vascular endothelial growth factor receptor-1 is
involved in lung-specific metastasis. Cancer Cell. 2:289–300. 2002.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Mihaylova Z, Ludovini V, Gregorg V, et al:
Serum level changes of matrix metalloproteinases 2 and 9, vascular
endothelial growth factor and epidermal growth factor receptor
during platinum-based chemotherapy in advanced non-small cell lung
cancer patients. J BUON. 12:105–111. 2007.PubMed/NCBI
|
31
|
Jiang L, Wu J, Yang Y, et al: Bmi-1
promotes the aggressiveness of glioma via activating the
NF-kappaB/MMP-9 signaling pathway. BMC Cancer. 12:4062012.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Li X, Yang Z, Song W, et al:
Overexpression of Bmi-1 contributes to the invasion and metastasis
of hepatocellular carcinoma by increasing the expression of matrix
metalloproteinase (MMP)2, MMP-9 and vascular endothelial growth
factor via the PTEN/PI3K/Akt pathway. Int J Oncol. 43:793–802.
2013.PubMed/NCBI
|
33
|
Wagenaar SS: New WHO-classification of
lung and pleural tumors. Ned Tijdschr Geneeskd. 143:984–990.
1999.(In Dutch). PubMed/NCBI
|
34
|
Edge SB and Compton CC: The American Joint
Committee on Cancer: the 7th edition of the AJCC cancer staging
manual and the future of TNM. Ann Surg Oncol. 6:1471–1474. 2010.
View Article : Google Scholar
|
35
|
Noguchi M: Stepwise progression of
pulmonary adenocarcinoma-clinical and molecular implications.
Cancer Metastasis Rev. 29:15–21. 2010. View Article : Google Scholar : PubMed/NCBI
|
36
|
Hayes DN, Monti S, Parmigiani G, et al:
Gene expression profiling reveals reproducible human lung
adenocarcinoma subtypes in multiple independent patient cohorts. J
Clin Oncol. 24:5079–5090. 2006. View Article : Google Scholar : PubMed/NCBI
|
37
|
Silva J, García JM, Peña C, et al:
Implication of polycomb members Bmi-1, Mel-18 and Hpc-2 in the
regulation of p16INK4a, p14ARF, h-TERT and c-Myc expression in
primary breast carcinomas. Clin Cancer Res. 12:6929–6936. 2006.
View Article : Google Scholar : PubMed/NCBI
|
38
|
He S, Iwashita T, Buchstaller J, Molofsky
AV, Thomas D and Morrison SJ: Bmi-1 over-expression in neural
stem/progenitor cells increases proliferation and neurogenesis in
culture but has little effect on these functions in vivo. Dev Biol.
328:257–272. 2009. View Article : Google Scholar : PubMed/NCBI
|
39
|
Lindström MS, Klangby U and Wiman KG:
p14ARF homozygous deletion or MDM2 overexpression in Burkitt
lymphoma lines carrying wild type p53. Oncogene. 20:2171–2177.
2001. View Article : Google Scholar : PubMed/NCBI
|
40
|
Song LB, Li J, Liao WT, et al: The
polycomb group protein Bmi-1 represses the tumor suppressor PTEN
and induces epithelial-mesenchymal transition in human
nasopharyngeal epithelial cells. J Clin Invest. 119:3626–3636.
2009. View
Article : Google Scholar : PubMed/NCBI
|
41
|
Stetler-Stevenson WG: Matrix
metalloproteinases in angiogenesis: a moving target for therapeutic
intervention. J Clin Invest. 103:1237–1241. 1999. View Article : Google Scholar : PubMed/NCBI
|
42
|
Egeblad M and Werb Z: New functions for
the matrix metalloproteinases in cancer progression. Nat Rev
Cancer. 2:161–174. 2002. View
Article : Google Scholar : PubMed/NCBI
|
43
|
Talvensaari-Mattila A, Pääkkö P, Höyhtyä
M, Blanco-Sequeiros G and Turpeenniemi-Hujanen T: Matrix
metalloproteinase-2 immunoreactive protein: a marker of
aggressiveness in breast carcinoma. Cancer. 83:1153–1162. 1998.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Wang L, Wang Q, Li HL and Han LY:
Expression of MiR200a, miR93, metastasis-related gene RECK and
MMP2/MMP9 in human cervical carcinoma - relationship with
prognosis. Asian Pac J Cancer Prev. 14:2113–2118. 2013. View Article : Google Scholar : PubMed/NCBI
|
45
|
Bergers G, Brekken R, McMahon G, et al:
Matrix metalloproteinase-9 triggers the angiogenic switch during
carcinogenesis. Nat Cell Biol. 2:737–744. 2000. View Article : Google Scholar : PubMed/NCBI
|