1
|
Maekawa T, Sakura H, Kanei-Ishii C, Sudo
T, Yoshimura T, Fujisawa J, Yoshida M and Ishii S: Leucine zipper
structure of the protein CRE-BP1 binding to the cyclic AMP response
element in brain. Embo J. 8:2023–2028. 1989.PubMed/NCBI
|
2
|
van Dam H and Castellazzi M: Distinct
roles of Jun: Fos and Jun: ATF dimers in oncogenesis. Oncogene.
20:2453–2464. 2001. View Article : Google Scholar : PubMed/NCBI
|
3
|
Maekawa T, Shinagawa T, Sano Y, Sakuma T,
Nomura S, Nagasaki K, Miki Y, Saito-Ohara F, Inazawa J, Kohno T, et
al: Reduced levels of ATF-2 predispose mice to mammary tumors. Mol
Cell Biol. 27:1730–1744. 2007. View Article : Google Scholar : PubMed/NCBI
|
4
|
Bhoumik A and Ronai Z: ATF2: A
transcription factor that elicits oncogenic or tumor suppressor
activities. Cell Cycle. 7:2341–2345. 2008. View Article : Google Scholar : PubMed/NCBI
|
5
|
Yu T, Li YJ, Bian AH, Zuo HB, Zhu TW, Ji
SX, Kong F, Yin de Q, Wang CB, Wang ZF, et al: The regulatory role
of activating transcription factor 2 in inflammation. Mediators
Inflamm. 2014:9504722014. View Article : Google Scholar : PubMed/NCBI
|
6
|
Morrison DK and Davis RJ: Regulation of
MAP kinase signaling modules by scaffold proteins in mammals. Annu
Rev Cell Dev Biol. 19:91–118. 2003. View Article : Google Scholar : PubMed/NCBI
|
7
|
van Dam H, Wilhelm D, Herr I, Steffen A,
Herrlich P and Angel P: ATF-2 is preferentially activated by
stress-activated protein kinases to mediate c-jun induction in
response to genotoxic agents. Embo J. 14:1798–1811. 1995.PubMed/NCBI
|
8
|
Papassava P, Gorgoulis VG, Papaevangeliou
D, Vlahopoulos S, van Dam H and Zoumpourlis V: Overexpression of
activating transcription factor-2 is required for tumor growth and
progression in mouse skin tumors. Cancer Res. 64:8573–8584. 2004.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Bhoumik A, Huang TG, Ivanov V, Gangi L,
Qiao RF, Woo SL, Chen SH and Ronai Z: An ATF2-derived peptide
sensitizes melanomas to apoptosis and inhibits their growth and
metastasis. J Clin Invest. 110:643–650. 2002. View Article : Google Scholar : PubMed/NCBI
|
10
|
Liu S, Wang F, Yan L, Zhang L, Song Y, Xi
S, Jia J and Sun G: Oxidative stress and MAPK involved into ATF2
expression in immortalized human urothelial cells treated by
arsenic. Arch Toxicol. 87:981–989. 2013. View Article : Google Scholar : PubMed/NCBI
|
11
|
Sheikh MS and Fornace AJ Jr: Regulation of
translation initiation following stress. Oncogene. 18:6121–6128.
1999. View Article : Google Scholar : PubMed/NCBI
|
12
|
Lackner DH and Bähler J: Translational
control of gene expression from transcripts to transcriptomes. Int
Rev Cell Mol Biol. 271:199–251. 2008. View Article : Google Scholar : PubMed/NCBI
|
13
|
Shatsky IN, Dmitriev SE, Terenin IM and
Andreev DE: Cap- and IRES-independent scanning mechanism of
translation initiation as an alternative to the concept of cellular
IRESs. Mol Cells. 30:285–293. 2010. View Article : Google Scholar : PubMed/NCBI
|
14
|
Stoneley M and Willis AE: Cellular
internal ribosome entry segments: Structures, trans-acting factors
and regulation of gene expression. Oncogene. 23:3200–3207. 2004.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Hellen CU and Sarnow P: Internal ribosome
entry sites in eukaryotic mRNA molecules. Genes Dev. 15:1593–1612.
2001. View Article : Google Scholar : PubMed/NCBI
|
16
|
Komar AA and Hatzoglou M: Internal
ribosome entry sites in cellular mRNAs: Mystery of their existence.
J Biol Chem. 280:23425–23428. 2005. View Article : Google Scholar : PubMed/NCBI
|
17
|
Oumard A, Hennecke M, Hauser H and
Nourbakhsh M: Translation of NRF mRNA is mediated by highly
efficient internal ribosome entry. Mol Cell Biol. 20:2755–2759.
2000. View Article : Google Scholar : PubMed/NCBI
|
18
|
Riley A, Jordan LE and Holcik M: Distinct
5′ UTRs regulate XIAP expression under normal growth conditions and
during cellular stress. Nucleic Acids Res. 38:4665–4674. 2010.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Shiroki K, Ohsawa C, Sugi N, Wakiyama M,
Miura K, Watanabe M, Suzuki Y and Sugano S: Internal ribosome entry
site-mediated translation of Smad5 in vivo: Requirement for a
nuclear event. Nucleic Acids Res. 30:2851–2861. 2002. View Article : Google Scholar : PubMed/NCBI
|
20
|
Baird SD, Turcotte M, Korneluk RG and
Holcik M: Searching for IRES. RNA. 12:1755–1785. 2006. View Article : Google Scholar : PubMed/NCBI
|
21
|
Nevins TA, Harder ZM, Korneluk RG and
Holcik M: Distinct regulation of internal ribosome entry
site-mediated translation following cellular stress is mediated by
apoptotic fragments of eIF4G translation initiation factor family
members eIF4GI and p97/DAP5/NAT1. J Biol Chem. 278:3572–3579. 2003.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Yang L, Gu L, Li Z and Zhou M: Translation
of TRAF1 is regulated by IRES-dependent mechanism and stimulated by
vincristine. Nucleic Acids Res. 38:4503–4513. 2010. View Article : Google Scholar : PubMed/NCBI
|
23
|
Chan CP, Kok KH, Tang HM, Wong CM and Jin
DY: Internal ribosome entry site-mediated translational regulation
of ATF4 splice variant in mammalian unfolded protein response.
Biochim Biophys Acta. 1833:2165–2175. 2013. View Article : Google Scholar : PubMed/NCBI
|
24
|
Fabrizio C, Stefano M, Laura G, Marco N,
Lorenzo M and Antonio O: Re: Baseline and early MR apparent
diffusion coefficient quantification as a predictor of response of
unresectable hepatocellular carcinoma to doxorubicin drug-eluting
bead chemoembolization. J Vasc Interv Radiol. 27:1456–1458. 2016.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Chen L, Liu Y, Wang W and Liu K: Effect of
integrin receptor-targeted liposomal paclitaxel for hepatocellular
carcinoma targeting and therapy. Oncol Lett. 10:77–84.
2015.PubMed/NCBI
|
26
|
Xi G, Hu X, Wu B, Jiang H, Young CY, Pang
Y and Yuan H: Autophagy inhibition promotes paclitaxel-induced
apoptosis in cancer cells. Cancer Lett. 307:141–148. 2011.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Pelletier J and Sonenberg N: Internal
initiation of translation of eukaryotic mRNA directed by a sequence
derived from poliovirus RNA. Nature. 334:320–325. 1988. View Article : Google Scholar : PubMed/NCBI
|
28
|
Komar AA and Hatzoglou M: Cellular
IRES-mediated translation: The war of ITAFs in pathophysiological
states. Cell Cycle. 10:229–240. 2014. View Article : Google Scholar
|
29
|
Gozdecka M, Lyons S, Kondo S, Taylor J, Li
Y, Walczynski J, Thiel G, Breitwieser W and Jones N: JNK suppresses
tumor formation via a gene-expression program mediated by ATF2.
Cell Rep. 9:1361–1374. 2014. View Article : Google Scholar : PubMed/NCBI
|
30
|
De Graeve F, Bahr A, Sabapathy KT, Hauss
C, Wagner EF, Kedinger C and Chatton B: Role of the ATFa/JNK2
complex in Jun activation. Oncogene. 18:3491–3500. 1999. View Article : Google Scholar : PubMed/NCBI
|
31
|
Livingstone C, Patel G and Jones N: ATF-2
contains a phosphorylation-dependent transcriptional activation
domain. EMBO J. 14:1785–1797. 1995.PubMed/NCBI
|
32
|
Zeke A, Bastys T, Alexa A, Garai Á,
Mészáros B, Kirsch K, Dosztányi Z, Kalinina OV and Reményi A:
Systematic discovery of linear binding motifs targeting an ancient
protein interaction surface on MAP kinases. Mol Syst Biol.
11:8372015. View Article : Google Scholar : PubMed/NCBI
|
33
|
King HA, Cobbold LC and Willis AE: The
role of IRES trans-acting factors in regulating translation
initiation. Biochem Soc Trans. 38:1581–1586. 2010. View Article : Google Scholar : PubMed/NCBI
|
34
|
Filbin ME and Kieft JS: Toward a
structural understanding of IRES RNA function. Curr Opin Struct
Biol. 19:267–276. 2009. View Article : Google Scholar : PubMed/NCBI
|
35
|
Komuro I, Schalling M, Jahn L, Bodmer R,
Jenkins NA, Copeland NG and Izumo S: Gtx: A novel murine
homeobox-containing gene, expressed specifically in glial cells of
the brain and germ cells of testis, has a transcriptional repressor
activity in vitro for a serum-inducible promoter. EMBO J.
12:1387–1401. 1993.PubMed/NCBI
|
36
|
Hu MC, Tranque P, Edelman GM and Mauro VP:
rRNA-complementarity in the 5′ untranslated region of mRNA
specifying the Gtx homeodomain protein: Evidence that base-pairing
to 18S rRNA affects translational efficiency. Proc Natl Acad Sci
USA. 96:1339–1344. 1999. View Article : Google Scholar : PubMed/NCBI
|
37
|
Cencig S, Nanbru C, Le SY, Gueydan C, Huez
G and Kruys V: Mapping and characterization of the minimal internal
ribosome entry segment in the human c-myc mRNA 5′ untranslated
region. Oncogene. 23:267–277. 2004. View Article : Google Scholar : PubMed/NCBI
|
38
|
Schepens B, Tinton SA, Bruynooghe Y,
Beyaert R and Cornelis S: The polypyrimidine tract-binding protein
stimulates HIF-1alpha IRES-mediated translation during hypoxia.
Nucleic Acids Res. 33:6884–6894. 2005. View Article : Google Scholar : PubMed/NCBI
|
39
|
Petz M, Them N, Huber H, Beug H and
Mikulits W: La enhances IRES-mediated translation of laminin B1
during malignant epithelial to mesenchymal transition. Nucleic
Acids Res. 40:290–302. 2012. View Article : Google Scholar : PubMed/NCBI
|
40
|
Blau L, Knirsh R, Ben-Dror I, Oren S,
Kuphal S, Hau P, Proescholdt M, Bosserhoff AK and Vardimon L:
Aberrant expression of c-Jun in glioblastoma by internal ribosome
entry site (IRES)-mediated translational activation. Proc Natl Acad
Sci USA. 109:E2875–E2884. 2012. View Article : Google Scholar : PubMed/NCBI
|
41
|
Shi Y, Sharma A, Wu H, Lichtenstein A and
Gera J: Cyclin D1 and c-myc internal ribosome entry site
(IRES)-dependent translation is regulated by AKT activity and
enhanced by rapamycin through a p38 MAPK- and ERK-dependent
pathway. J Biol Chem. 280:10964–10973. 2005. View Article : Google Scholar : PubMed/NCBI
|