1
|
Xiong H, Du S, Ni J, Zhou J and Yao J:
Mitochondria and nuclei dual-targeted heterogeneous hydroxyapatite
nanoparticles for enhancing therapeutic efficacy of doxorubicin.
Biomaterials. 94:70–83. 2016. View Article : Google Scholar : PubMed/NCBI
|
2
|
Chen H and Chan DC: Mitochondrial dynamics
- fusion, fission, movement, and mitophagy - in neurodegenerative
diseases. Hum Mol Genet. 18(R2): R169–R176. 2009. View Article : Google Scholar : PubMed/NCBI
|
3
|
Schapira AH: Mitochondrial diseases.
Lancet. 379:1825–1834. 2012. View Article : Google Scholar : PubMed/NCBI
|
4
|
Fulda S, Galluzzi L and Kroemer G:
Targeting mitochondria for cancer therapy. Nat Rev Drug Discov.
9:447–464. 2010. View
Article : Google Scholar : PubMed/NCBI
|
5
|
Wallace DC: Mitochondria and cancer. Nat
Rev Cancer. 12:685–698. 2012. View
Article : Google Scholar : PubMed/NCBI
|
6
|
Warburg O, Wind F and Negelein E: The
metabolism of tumors in the body. J Gen Physiol. 8:519–530. 1927.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Warburg O: On the origin of cancer cells.
Science. 123:309–314. 1956. View Article : Google Scholar : PubMed/NCBI
|
8
|
Galluzzi L, Larochette N, Zamzami N and
Kroemer G: Mitochondria as therapeutic targets for cancer
chemotherapy. Oncogene. 25:4812–4830. 2006. View Article : Google Scholar : PubMed/NCBI
|
9
|
Mathew R, Karantza-Wadsworth V and White
E: Role of autophagy in cancer. Nat Rev Cancer. 7:961–967. 2007.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Yousif LF, Stewart KM and Kelley SO:
Targeting mitochondria with organelle-specific compounds:
strategies and applications. ChemBioChem. 10:1939–1950. 2009.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Liberman EA, Topaly VP, Tsofina LM,
Jasaitis AA and Skulachev VP: Mechanism of coupling of oxidative
phosphorylation and the membrane potential of mitochondria. Nature.
222:1076–1078. 1969. View Article : Google Scholar : PubMed/NCBI
|
12
|
Murphy MP and Smith RA: Targeting
antioxidants to mitochondria by conjugation to lipophilic cations.
Annu Rev Pharmacol Toxicol. 47:629–656. 2007. View Article : Google Scholar : PubMed/NCBI
|
13
|
Ross MF, Kelso GF, Blaikie FH, James AM,
Cochemé HM, Filipovska A, Da Ros T, Hurd TR, Smith RA and Murphy
MP: Lipophilic triphenylphosphonium cations as tools in
mitochondrial bioenergetics and free radical biology. Biochemistry
(Mosc). 70:222–230. 2005. View Article : Google Scholar : PubMed/NCBI
|
14
|
Cortes LA, Castro L, Pesce B, Maya JD,
Ferreira J, Castro- Castillo V, Parra E, Jara JA and López-Muñoz R:
Novel gallate triphenylphosphonium derivatives with potent
antichagasic activity. PLoS One. 10:e01368522015. View Article : Google Scholar : PubMed/NCBI
|
15
|
Gruber J, Fong S, Chen CB, Yoong S,
Pastorin G, Schaffer S, Cheah I and Halliwell B:
Mitochondria-targeted antioxidants and metabolic modulators as
pharmacological interventions to slow ageing. Biotechnol Adv.
31:563–592. 2013. View Article : Google Scholar : PubMed/NCBI
|
16
|
Kang BH, Plescia J, Song HY, Meli M,
Colombo G, Beebe K, Scroggins B, Neckers L and Altieri DC:
Combinatorial drug design targeting multiple cancer signaling
networks controlled by mitochondrial Hsp90. J Clin Invest.
119:454–464. 2009. View
Article : Google Scholar : PubMed/NCBI
|
17
|
Kang BH, Siegelin MD, Plescia J, Raskett
CM, Garlick DS, Dohi T, Lian JB, Stein GS, Languino LR and Altieri
DC: Preclinical characterization of mitochondria-targeted small
molecule hsp90 inhibitors, gamitrinibs, in advanced prostate
cancer. Clin Cancer Res. 16:4779–4788. 2010. View Article : Google Scholar : PubMed/NCBI
|
18
|
Johnson LV, Walsh ML and Chen LB:
Localization of mitochondria in living cells with rhodamine 123.
Proc Natl Acad Sci USA. 77:990–994. 1980. View Article : Google Scholar : PubMed/NCBI
|
19
|
Battigelli A, Russier J, Venturelli E,
Fabbro C, Petronilli V, Bernardi P, Da Ros T, Prato M and Bianco A:
Peptide-based carbon nanotubes for mitochondrial targeting.
Nanoscale. 5:9110–9117. 2013. View Article : Google Scholar : PubMed/NCBI
|
20
|
Emanuelsson O, Nielsen H, Brunak S and von
Heijne G: Predicting subcellular localization of proteins based on
their N-terminal amino acid sequence. J Mol Biol. 300:1005–1016.
2000. View Article : Google Scholar : PubMed/NCBI
|
21
|
Szeto HH: Cell-permeable,
mitochondrial-targeted, peptide antioxidants. AAPS J. 8:E277–E283.
2006. View Article : Google Scholar : PubMed/NCBI
|
22
|
Jean SR, Ahmed M, Lei EK, Wisnovsky SP and
Kelley SO: Peptide-mediated delivery of chemical probes and
therapeutics to mitochondria. Acc Chem Res. 49:1893–1902. 2016.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Peer D, Karp JM, Hong S, Farokhzad OC,
Margalit R and Langer R: Nanocarriers as an emerging platform for
cancer therapy. Nat Nanotechnol. 2:751–760. 2007. View Article : Google Scholar : PubMed/NCBI
|
24
|
Iyer AK, Khaled G, Fang J and Maeda H:
Exploiting the enhanced permeability and retention effect for tumor
targeting. Drug Discov Today. 11:812–818. 2006. View Article : Google Scholar : PubMed/NCBI
|
25
|
Pastorin G: Crucial functionalizations of
carbon nanotubes for improved drug delivery: a valuable option?
Pharm Res. 26:746–769. 2009. View Article : Google Scholar : PubMed/NCBI
|
26
|
Marrache S and Dhar S: Engineering of
blended nanoparticle platform for delivery of mitochondria-acting
therapeutics. Proc Natl Acad Sci USA. 109:16288–16293. 2012.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Kolishetti N, Dhar S, Valencia PM, Lin LQ,
Karnik R, Lippard SJ, Langer R and Farokhzad OC: Engineering of
self-assembled nanoparticle platform for precisely controlled
combination drug therapy. Proc Natl Acad Sci USA. 107:17939–17944.
2010. View Article : Google Scholar : PubMed/NCBI
|
28
|
Yamada Y and Harashima H: Mitochondrial
drug delivery systems for macromolecule and their therapeutic
application to mitochondrial diseases. Adv Drug Deliv Rev.
60:1439–1462. 2008. View Article : Google Scholar : PubMed/NCBI
|
29
|
DSouza GG, Rammohan R, Cheng SM, Torchilin
VP and Weissig V: DQAsome-mediated delivery of plasmid DNA toward
mitochondria in living cells. J Control Release. 92:189–197. 2003.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Zhou F, Xing D, Wu B, Wu S, Ou Z and Chen
WR: New insights of transmembranal mechanism and subcellular
localization of noncovalently modified single-walled carbon
nanotubes. Nano Lett. 10:1677–1681. 2010. View Article : Google Scholar : PubMed/NCBI
|
31
|
Moon HK, Lee SH and Choi HC: In vivo
near-infrared mediated tumor destruction by photothermal effect of
carbon nanotubes. ACS Nano. 3:3707–3713. 2009. View Article : Google Scholar : PubMed/NCBI
|
32
|
Ali-Boucetta H, Al-Jamal KT, Müller KH, Li
S, Porter AE, Eddaoudi A, Prato M, Bianco A and Kostarelos K:
Cellular uptake and cytotoxic impact of chemically functionalized
and polymer-coated carbon nanotubes. Small. 7:3230–3238. 2011.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Mao H, Kawazoe N and Chen G: Uptake and
intracellular distribution of collagen-functionalized single-walled
carbon nanotubes. Biomaterials. 34:2472–2479. 2013. View Article : Google Scholar : PubMed/NCBI
|
34
|
Holt BD, Dahl KN and Islam MF: Cells take
up and recover from protein-stabilized single-wall carbon nanotubes
with two distinct rates. ACS Nano. 6:3481–3490. 2012. View Article : Google Scholar : PubMed/NCBI
|
35
|
Kagan VE, Konduru NV, Feng W, Allen BL,
Conroy J, Volkov Y, Vlasova II, Belikova NA, Yanamala N, Kapralov
A, et al: Carbon nanotubes degraded by neutrophil myeloperoxidase
induce less pulmonary inflammation. Nat Nanotechnol. 5:354–359.
2010. View Article : Google Scholar : PubMed/NCBI
|
36
|
Chin SF, Baughman RH, Dalton AB, Dieckmann
GR, Draper RK, Mikoryak C, Musselman IH, Poenitzsch VZ, Xie H and
Pantano P: Amphiphilic helical peptide enhances the uptake of
single-walled carbon nanotubes by living cells. Exp Biol Med
(Maywood). 232:1236–1244. 2007. View Article : Google Scholar : PubMed/NCBI
|
37
|
Ali-Boucetta H, Nunes A, Sainz R, Herrero
MA, Tian B, Prato M, Bianco A and Kostarelos K: Asbestos-like
pathogenicity of long carbon nanotubes alleviated by chemical
functionalization. Angew Chem Int Ed Engl. 52:2274–2278. 2013.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Wick P, Manser P, Limbach LK,
Dettlaff-Weglikowska U, Krumeich F, Roth S, Stark WJ and Bruinink
A: The degree and kind of agglomeration affect carbon nanotube
cytotoxicity. Toxicol Lett. 168:121–131. 2007. View Article : Google Scholar : PubMed/NCBI
|
39
|
Yang ST, Wang X, Jia G, Gu Y, Wang T, Nie
H, Ge C, Wang H and Liu Y: Long-term accumulation and low toxicity
of single-walled carbon nanotubes in intravenously exposed mice.
Toxicol Lett. 181:182–189. 2008. View Article : Google Scholar : PubMed/NCBI
|
40
|
Campagnolo L, Massimiani M, Palmieri G,
Bernardini R, Sacchetti C, Bergamaschi A, Vecchione L, Magrini A,
Bottini M and Pietroiusti A: Biodistribution and toxicity of
pegylated single wall carbon nanotubes in pregnant mice. Part Fibre
Toxicol. 10:212013. View Article : Google Scholar : PubMed/NCBI
|
41
|
Salvador-Morales C, Flahaut E, Sim E,
Sloan J, Green ML and Sim RB: Complement activation and protein
adsorption by carbon nanotubes. Mol Immunol. 43:193–201. 2006.
View Article : Google Scholar : PubMed/NCBI
|