Biomarkers for EMT and MET in breast cancer: An update (Review)
- Authors:
- Fei Liu
- Li‑Na Gu
- Bao‑En Shan
- Cui‑Zhi Geng
- Mei‑Xiang Sang
-
Affiliations: Tumor Research Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China, Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China, Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China - Published online on: November 8, 2016 https://doi.org/10.3892/ol.2016.5369
- Pages: 4869-4876
This article is mentioned in:
Abstract
Jemal A, Bray F, Center MM, Ferlay J, Ward E and Forman D: Global cancer statistics. CA Cancer J Clin. 61:69–90. 2011. View Article : Google Scholar : PubMed/NCBI | |
DeSantis C, Siegel R, Bandi P and Jemal A: Breast cancer statistics. CA Cancer J Cli. 61:409–418. 2011. | |
O'Shaughnessy J: Extending survival with chemotherapy in metastatic breast cancer. Oncologist. 10:(Suppl 3). S20–S29. 2005. View Article : Google Scholar | |
Creighton CJ, Chang JC and Rosen JM: Epithelial-mesenchymal transition (EMT) in tumor-initiating cells and its clinical implications in breast cancer. J Mammary Gland Biol Neoplasia. 15:253–260. 2010. View Article : Google Scholar : PubMed/NCBI | |
Guarino M, Rubino B and Ballabio G: The role of epithelial-mesenchymal transition in cancer pathology. Pathology. 39:305–318. 2007. View Article : Google Scholar : PubMed/NCBI | |
Woodhouse EC, Chuaqui RF and Liotta LA: General mechanisms of metastasis. Cancer 80 (Suppl). 1529–1537. 1997. View Article : Google Scholar | |
Chambers AF, Groom AC and MacDonald IC: Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer. 2:563–572. 2002. View Article : Google Scholar : PubMed/NCBI | |
Weidner N, Folkman J, Pozza F, Bevilacqua P, Allred EN, Moore DH, Meli S and Gasparini G: Tumor angiogenesis: A new significant and independent prognostic indicator in early-stage breast carcinoma. J Natl Cancer Ins. 84:1875–1887. 1992. View Article : Google Scholar | |
Folkman J and Shing Y: Angiogenesis. J Biol chem. 267:10931–10934. 1992.PubMed/NCBI | |
Folkman J: The role of angiogenesis in tumor growth. S Cancer Biol. 3:65–71. 1992. | |
Chao YL, Shepard CR and Wells A: Breast carcinoma cells re-express E-cadherin during mesenchymal to epithelial reverting transition. Mol Cancer. 9:1792010. View Article : Google Scholar : PubMed/NCBI | |
Chaffer CL, Brennan JP, Slavin JL, Blick T, Thompson EW and Williams ED: Mesenchymal-to-epithelial transition facilitates bladder cancer metastasis: Role of fibroblast growth factor receptor-2. Cancer Res. 66:11271–11278. 2006. View Article : Google Scholar : PubMed/NCBI | |
Chaffer CL, Thompson EW and Williams ED: Mesenchymal to epithelial transition in development and disease. Cells Tissues Organs. 185:7–19. 2007. View Article : Google Scholar : PubMed/NCBI | |
Hugo H, Ackland ML, Blick T, Lawrence MG, Clements JA, Williams ED and Thompson EW: Epithelial-mesenchymal and mesenchymal-epithelial transitions in carcinoma progression. J Cell Physiol. 213:374–383. 2007. View Article : Google Scholar : PubMed/NCBI | |
Hyafil F, Babinet C and Jacob F: Cell-cell interactions in early embryogenesis: A molecular approach to the role of calcium. Cell. 26:447–454. 1981. View Article : Google Scholar : PubMed/NCBI | |
Cavallaro U and Christofori G: Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nat Rev Cancer. 4:118–132. 2004. View Article : Google Scholar : PubMed/NCBI | |
Hay ED and Zuk A: Transformations between epithelium and mesenchyme: Normal, pathological, and experimentally induced. Am J Kidney Dis. 26:678–690. 1995. View Article : Google Scholar : PubMed/NCBI | |
Vleminckx K, Vakaet L Jr, Mareel M, Fiers W and van Roy F: Genetic manipulation of E-cadherin expression by epithelial tumor cells reveals an invasion suppressor role. Cell. 66:107–119. 1991. View Article : Google Scholar : PubMed/NCBI | |
Perl AK, Wilgenbus P, Dahl U, Semb H and Christofori G: A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature. 392:190–193. 1998. View Article : Google Scholar : PubMed/NCBI | |
Canel M, Serrels A, Frame MC and Brunton VG: E-cadherin-integrin crosstalk in cancer invasion and metastasis. J Cell Sci. 126:393–401. 2013. View Article : Google Scholar : PubMed/NCBI | |
Heimann R, Lan F, McBride R and Hellman S: Separating favorable from unfavorable prognostic markers in breast cancer: The role of E-cadherin. Cancer Res. 60:298–304. 2000.PubMed/NCBI | |
Hunt NC, Douglas-Jones AG, Jasani B, Morgan JM and Pignatelli M: Loss of E-cadherin expression associated with lymph node metastases in small breast carcinomas. Virchows Arch. 430:285–289. 1997. View Article : Google Scholar : PubMed/NCBI | |
Oka H, Shiozaki H, Kobayashi K, Inoue M, Tahara H, Kobayashi T, Takatsuka Y, Matsuyoshi N, Hirano S and Takeichi M: Expression of E-cadherin cell adhesion molecules in human breast cancer tissues and its relationship to metastasis. Cancer Res. 53:1696–1701. 1993.PubMed/NCBI | |
Siitonen SM, Kononen JT, Helin HJ, Rantala IS, Holli KA and Isola JJ: Reduced E-cadherin expression is associated with invasiveness and unfavorable prognosis in breast cancer. Am J Clin Pathol. 105:394–402. 1996. View Article : Google Scholar : PubMed/NCBI | |
Mahler-Araujo B, Savage K, Parry S and Reis-Filho JS: Reduction of E-cadherin expression is associated with non-lobular breast carcinomas of basal-like and triple negative phenotype. J Clin Pathol. 61:615–620. 2008. View Article : Google Scholar : PubMed/NCBI | |
Lopes N, Carvalho J, Durães C, Sousa B, Gomes M, Costa JL, Oliveira C, Paredes J and Schmitt F: 1Alpha, 25-dihydroxyvitamin D3 induces de novo E-cadherin expression in triple-negative breast cancer cells by CDH1-promoter demethylation. Anticancer Res. 32:249–257. 2012.PubMed/NCBI | |
Choi Y, Lee HJ, Jang MH, Gwak JM, Lee KS, Kim EJ, Kim HJ, Lee HE and Park SY: Epithelial-mesenchymal transition increases during the progression of in situ to invasive basal-like breast cancer. Hum Pathol. 44:2581–2589. 2013. View Article : Google Scholar : PubMed/NCBI | |
Gravdal K, Halvorsen OJ, Haukaas SA and Akslen LA: A switch from E-cadherin to N-cadherin expression indicates epithelial to mesenchymal transition and is of strong and independent importance for the progress of prostate cancer. Clin Cancer Res. 13:7003–7011. 2007. View Article : Google Scholar : PubMed/NCBI | |
Chao Y, Wu Q, Acquafondata M, Dhir R and Wells A: Partial mesenchymal to epithelial reverting transition in breast and prostate cancer metastases. Cancer Microenviron:. 5:19–28. 2012. View Article : Google Scholar : PubMed/NCBI | |
Brown RL, Reinke LM, Damerow MS, Perez D, Chodosh LA, Yang J and Cheng C: CD44 splice isoform switching in human and mouse epithelium is essential for epithelial-mesenchymal transition and breast cancer progression. J Clin Invest. 121:1064–1074. 2011. View Article : Google Scholar : PubMed/NCBI | |
Leth-Larsen R, Lund R, Hansen HV, Laenkholm AV, Tarin D, Jensen ON and Ditzel HJ: Metastasis-related plasma membrane proteins of human breast cancer cells identified by comparative quantitative mass spectrometry. Mol Cell Proteomics. 8:1436–1449. 2009. View Article : Google Scholar : PubMed/NCBI | |
Vogel W, Gish GD, Alves F and Pawson T: The discoidin domain receptor tyrosine kinases are activated by collagen. Mol Cell. 1:13–23. 1997. View Article : Google Scholar : PubMed/NCBI | |
Zeisberg EM, Tarnavski O, Zeisberg M, Dorfman AL, McMullen JR, Gustafsson E, Chandraker A, Yuan X, Pu WT, Roberts AB, et al: Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat Med. 13:952–961. 2007. View Article : Google Scholar : PubMed/NCBI | |
Goldsmith EC, Hoffman A, Morales MO, Potts JD, Price RL, McFadden A, Rice M and Borg TK: Organization of fibroblasts in the heart. Dev Dyn. 230:787–794. 2004. View Article : Google Scholar : PubMed/NCBI | |
Yan Z, Jin S, Wei Z, Huilian H, Zhanhai Y, Yue T, Juan L, Jing L, Libo Y and Xu L: Discoidin domain receptor 2 facilitates prostate cancer bone metastasis via regulating parathyroid hormone-related protein. Biochim Biophys Acta. 1842:1350–1363. 2014. View Article : Google Scholar : PubMed/NCBI | |
Evtimova V, Zeillinger R and Weidle UH: Identification of genes associated with the invasive status of human mammary carcinoma cell lines by transcriptional profiling. Tumor Biol. 24:189–198. 2003. View Article : Google Scholar | |
Zhang K, Corsa CA, Ponik SM, Prior JL, Piwnica-Worms D, Eliceiri KW, Keely PJ and Longmore GD: The collagen receptor discoidin domain receptor 2 stabilizes SNAIL1 to facilitate breast cancer metastasis. Nat Cell Biol. 15:677–687. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ren T, Zhang W, Liu X, Zhao H, Zhang J, Zhang J, Li X, Zhang Y, Bu X, Shi M, et al: Discoidin domain receptor 2 (DDR2) promotes breast cancer cell metastasis and the mechanism implicates epithelial-mesenchymal transition programme under hypoxia. J Pathol. 234:526–537. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bienz M: beta-Catenin: A pivot between cell adhesion and Wnt signalling. Curr Biol. 15:R64–R67. 2005. View Article : Google Scholar : PubMed/NCBI | |
Brabletz T, Jung A, Hermann K, Günther K, Hohenberger W and Kirchner T: Nuclear overexpression of the oncoprotein beta-catenin in colorectal cancer is localized predominantly at the invasion front. Pathol Res Pract. 194:701–704. 1998. View Article : Google Scholar : PubMed/NCBI | |
Zeisberg M and Neilson EG: Biomarkers for epithelial-mesenchymal transitions. J Clin Invest. 119:1429–1437. 2009. View Article : Google Scholar : PubMed/NCBI | |
Prasad CP, Rath G, Mathur S, Bhatnagar D, Parshad R and Ralhan R: Expression analysis of E-cadherin, Slug and GSK3beta in invasive ductal carcinoma of breast. BMC Cancer. 9:3252009. View Article : Google Scholar : PubMed/NCBI | |
Li L, Liu C, Amato RJ, Chang JT, Du G and Li W: CDKL2 promotes epithelial-mesenchymal transition and breast cancer progression. Oncotarget. 5:10840–10853. 2014. View Article : Google Scholar : PubMed/NCBI | |
Scanlon CS, Van Tubergen EA, Inglehart RC and D'Silva NJ: Biomarkers of epithelial-mesenchymal transition in squamous cell carcinoma. J Dent Res. 92:114–121. 2013. View Article : Google Scholar : PubMed/NCBI | |
Raymond WA and Leong AS: Vimentin - a new prognostic parameter in breast carcinoma? J Pathol. 158:107–114. 1989. View Article : Google Scholar : PubMed/NCBI | |
Bindels S, Mestdagt M, Vandewalle C, Jacobs N, Volders L, Noël A, van Roy F, Berx G, Foidart JM and Gilles C: Regulation of vimentin by SIP1 in human epithelial breast tumor cells. Oncogene. 25:4975–4985. 2006. View Article : Google Scholar : PubMed/NCBI | |
Patel NA, Patel PS and Vora HH: Role of PRL-3, Snail, Cytokeratin and Vimentin expression in epithelial mesenchymal transition in breast carcinoma. Breast Dis. 35:113–127. 2015. View Article : Google Scholar : PubMed/NCBI | |
Gabbiani G, Kapanci Y, Barazzone P and Franke WW: Immunochemical identification of intermediate-sized filaments in human neoplastic cells. A diagnostic aid for the surgical pathologist. Am J Pathol. 104:206–216. 1981.PubMed/NCBI | |
Damonte P, Gregg JP, Borowsky AD, Keister BA and Cardiff RD: EMT tumorigenesis in the mouse mammary gland. Lab Invest. 87:1218–1226. 2007. View Article : Google Scholar : PubMed/NCBI | |
Sarrió D, Rodriguez-Pinilla SM, Hardisson D, Cano A, Moreno-Bueno G and Palacios J: Epithelial-mesenchymal transition in breast cancer relates to the basal-like phenotype. Cancer Res. 68:989–997. 2008. View Article : Google Scholar : PubMed/NCBI | |
Yamashita M, Ogawa T, Zhang X, Hanamura N, Kashikura Y, Takamura M, Yoneda M and Shiraishi T: Role of stromal myofibroblasts in invasive breast cancer: Stromal expression of alpha-smooth muscle actin correlates with worse clinical outcome. Breast Cancer. 19:170–176. 2012. View Article : Google Scholar : PubMed/NCBI | |
Barrallo-Gimeno A and Nieto MA: The Snail genes as inducers of cell movement and survival: Implications in development and cancer. Development. 132:3151–3161. 2005. View Article : Google Scholar : PubMed/NCBI | |
McGrail DJ, Mezencev R, Kieu QM, McDonald JF and Dawson MR: SNAIL-induced epithelial-to-mesenchymal transition produces concerted biophysical changes from altered cytoskeletal gene expression. FASEB. 29:1280–1289. 2015. View Article : Google Scholar | |
Smith BN, Burton LJ, Henderson V, Randle DD, Morton DJ, Smith BA, Taliaferro-Smith L, Nagappan P, Yates C, Zayzafoon M, et al: Snail promotes epithelial mesenchymal transition in breast cancer cells in part via activation of nuclear ERK2. PloS One. 9:e1049872014. View Article : Google Scholar : PubMed/NCBI | |
Ferrari-Amorotti G, Chiodoni C, Shen F, Cattelani S, Soliera AR, Manzotti G, Grisendi G, Dominici M, Rivasi F, Colombo MP, et al: Suppression of invasion and metastasis of triple-negative breast cancer lines by pharmacological or genetic inhibition of slug activity. Neoplasia. 16:1047–1058. 2014. View Article : Google Scholar : PubMed/NCBI | |
Eger A, Aigner K, Sonderegger S, Dampier B, Oehler S, Schreiber M, Berx G, Cano A, Beug H and Foisner R: DeltaEF1 is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells. Oncogene. 24:2375–2385. 2005. View Article : Google Scholar : PubMed/NCBI | |
Shirakihara T, Saitoh M and Miyazono K: Differential regulation of epithelial and mesenchymal markers by deltaEF1 proteins in epithelial mesenchymal transition induced by TGF-beta. Mol Biol Cell. 18:3533–3544. 2007. View Article : Google Scholar : PubMed/NCBI | |
Gamba CO, Campos LC, Negreiros-Lima GL, Maciel-Lima K, Sousa LP, Estrela-Lima A, Ferreira E and Cassali GD: ZEB2 and ZEB1 expression in a spontaneous canine model of invasive micropapillary carcinoma of the mammary gland. Res Vet Sci. 97:554–559. 2014. View Article : Google Scholar : PubMed/NCBI | |
Aigner K, Dampier B, Descovich L, Mikula M, Sultan A, Schreiber M, Mikulits W, Brabletz T, Strand D, Obrist P, et al: The transcription factor ZEB1 (deltaEF1) promotes tumor cell dedifferentiation by repressing master regulators of epithelial polarity. Oncogene. 26:6979–6988. 2007. View Article : Google Scholar : PubMed/NCBI | |
Aigner K, Descovich L, Mikula M, Sultan A, Dampier B, Bonné S, van Roy F, Mikulits W, Schreiber M, Brabletz T, et al: The transcription factor ZEB1 (deltaEF1) represses Plakophilin 3 during human cancer progression. FEBS Lett. 581:1617–1624. 2007. View Article : Google Scholar : PubMed/NCBI | |
Vandewalle C, Comijn J, De Craene B, Vermassen P, Bruyneel E, Andersen H, Tulchinsky E, Van Roy F and Berx G: SIP1/ZEB2 induces EMT by repressing genes of different epithelial cell-cell junctions. Nucleic Acids Res. 33:6566–6578. 2005. View Article : Google Scholar : PubMed/NCBI | |
Zhang P, Sun Y and Ma L: ZEB1: At the crossroads of epithelial-mesenchymal transition, metastasis and therapy resistance. Cell Cycle. 14:481–487. 2015. View Article : Google Scholar : PubMed/NCBI | |
Moyret-Lalle C, Ruiz E and Puisieux A: Epithelial-mesenchymal transition transcription factors and miRNAs: ‘Plastic surgeons’ of breast cancer. World J Clin Oncol. 5:311–322. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yu W, Kamara H and Svoboda KK: The role of twist during palate development. Dev Dyn. 237:2716–2725. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kida Y, Asahina K, Teraoka H, Gitelman I and Sato T: Twist relates to tubular epithelial-mesenchymal transition and interstitial fibrogenesis in the obstructed kidney. J Histochem Cytochem. 55:661–673. 2007. View Article : Google Scholar : PubMed/NCBI | |
Yang MH, Wu MZ, Chiou SH, Chen PM, Chang SY, Liu CJ, Teng SC and Wu KJ: Direct regulation of TWIST by HIF-1alpha promotes metastasis. Nat Cell Biol. 10:295–305. 2008. View Article : Google Scholar : PubMed/NCBI | |
Mironchik Y, Winnard PT Jr, Vesuna F, Kato Y, Wildes F, Pathak AP, Kominsky S, Artemov D, Bhujwalla Z, Van Diest P, et al: Twist overexpression induces in vivo angiogenesis and correlates with chromosomal instability in breast cancer. Cancer Res. 65:10801–10809. 2005. View Article : Google Scholar : PubMed/NCBI | |
Wushou A, Hou J, Zhao YJ and Shao ZM: Twist-1 up-regulation in carcinoma correlates to poor survival. Int J Mol Sci. 15:21621–21630. 2014. View Article : Google Scholar : PubMed/NCBI | |
Mani SA, Yang J, Brooks M, Schwaninger G, Zhou A, Miura N, Kutok JL, Hartwell K, Richardson AL and Weinberg RA: Mesenchyme Forkhead 1 (FOXC2) plays a key role in metastasis and is associated with aggressive basal-like breast cancers. Proc Natl Acad Sci USA. 104:10069–10074. 2007. View Article : Google Scholar : PubMed/NCBI | |
Taube JH, Herschkowitz JI, Komurov K, et al: Core epithelial-to-mesenchymal transition interactome gene-expression signature is associated with claudin-low and metaplastic breast cancer subtypes. Proceedings of the National Academy of Sciences of the United States of America. 107:15449–15454. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ravindranath A, Yuen HF, Chan KK, Grills C, Fennell DA, Lappin TR and El-Tanani M: Wnt-β-catenin-Tcf-4 signalling-modulated invasiveness is dependent on osteopontin expression in breast cancer. Br J Cancer. 105:542–551. 2011. View Article : Google Scholar : PubMed/NCBI | |
Li H, Chen X, Gao Y, Wu J, Zeng F and Song F: XBP1 induces snail expression to promote epithelial- to-mesenchymal transition and invasion of breast cancer cells. Cell Signal. 27:82–89. 2015. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Yang W, Yang Q and Zhou S: Nuclear localization of GLI1 and elevated expression of FOXC2 in breast cancer is associated with the basal-like phenotype. Histol Histopathol. 27:475–484. 2012.PubMed/NCBI | |
Lim JC, Koh VC, Tan JS, Tan WJ, Thike AA and Tan PH: Prognostic significance of epithelial-mesenchymal transition proteins Twist and Foxc2 in phyllodes tumors of the breast. Breast Cancer Res Treat. 150:19–29. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hartwell KA, Muir B, Reinhardt F, Carpenter AE, Sgroi DC and Weinberg RA: The Spemann organizer gene, Goosecoid, promotes tumor metastasis. Proc Natl Acad Sci USA. 103:18969–18974. 2006. View Article : Google Scholar : PubMed/NCBI | |
Si ML, Zhu S, Wu H, Lu Z, Wu F and Mo YY: miR-21-mediated tumor growth. Oncogene. 26:2799–2803. 2007. View Article : Google Scholar : PubMed/NCBI | |
Han M, Liu M, Wang Y, Chen X, Xu J, Sun Y, Zhao L, Qu H, Fan Y and Wu C: Antagonism of miR-21 reverses epithelial-mesenchymal transition and cancer stem cell phenotype through AKT/ERK1/2 inactivation by targeting PTEN. PloS One. 7:e395202012. View Article : Google Scholar : PubMed/NCBI | |
Harquail J, Benzina S and Robichaud GA: MicroRNAs and breast cancer malignancy: An overview of miRNA-regulated cancer processes leading to metastasis. Cancer Biomark. 11:269–280. 2012.PubMed/NCBI | |
Ma L, Reinhardt F, Pan E, Soutschek J, Bhat B, Marcusson EG, Teruya-Feldstein J, Bell GW and Weinberg RA: Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model. Nat Biotechnol. 28:341–347. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ma L, Young J, Prabhala H, Pan E, Mestdagh P, Muth D, Teruya-Feldstein J, Reinhardt F, Onder TT, Valastyan S, et al: miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat Cell Biol. 12:247–256. 2010.PubMed/NCBI | |
Gwak JM, Kim HJ, Kim EJ, Chung YR, Yun S, Seo AN, Lee HJ and Park SY: MicroRNA-9 is associated with epithelial-mesenchymal transition, breast cancer stem cell phenotype and tumor progression in breast cancer. Breast Cancer Res Treat. 147:39–49. 2014. View Article : Google Scholar : PubMed/NCBI | |
Martello G, Rosato A, Ferrari F, Manfrin A, Cordenonsi M, Dupont S, Enzo E, Guzzardo V, Rondina M, Spruce T, et al: A MicroRNA targeting dicer for metastasis control. Cell. 141:1195–1207. 2010. View Article : Google Scholar : PubMed/NCBI | |
Burk U, Schubert J, Wellner U, Schmalhofer O, Vincan E, Spaderna S and Brabletz T: A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep. 9:582–589. 2008. View Article : Google Scholar : PubMed/NCBI | |
Korpal M, Ell BJ, Buffa FM, Ibrahim T, Blanco MA, Celià-Terrassa T, Mercatali L, Khan Z, Goodarzi H, Hua Y, et al: Direct targeting of Sec23a by miR-200s influences cancer cell secretome and promotes metastatic colonization. Nat Med. 17:1101–1108. 2011. View Article : Google Scholar : PubMed/NCBI | |
Jang K, Ahn H, Sim J, Han H, Abdul R, Paik SS, Chung MS and Jang SJ: Loss of microRNA-200a expression correlates with tumor progression in breast cancer. Transl Res. 163:242–251. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bracken CP, Gregory PA, Kolesnikoff N, Bert AG, Wang J, Shannon MF and Goodall GJ: A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. Cancer Res. 68:7846–7854. 2008. View Article : Google Scholar : PubMed/NCBI | |
Hong S, Noh H, Teng Y, Shao J, Rehmani H, Ding HF, Dong Z, Su SB, Shi H, Kim J and Huang S: SHOX2 is a direct miR-375 target and a novel epithelial-to-mesenchymal transition inducer in breast cancer cells. Neoplasia. 16:279–290.e1-5. 2014. View Article : Google Scholar : PubMed/NCBI | |
Arora H, Qureshi R and Park WY: Mir-506 regulates epithelial mesenchymal transition in breast cancer cell lines. PloS One. 8:e642732013. View Article : Google Scholar : PubMed/NCBI | |
Moes M, Le Bechec A, Crespo I, Laurini C, Halavatyi A, Vetter G, Del Sol A and Friederich E: A novel network integrating a miRNA-203/SNAI1 feedback loop which regulates epithelial to mesenchymal transition. PloS One. 7:e354402012. View Article : Google Scholar : PubMed/NCBI | |
Ding X, Park SI, McCauley LK and Wang CY: Signaling between transforming growth factor β(TGF-β) and transcription factor SNAI2 represses expression of microRNA miR-203 to promote epithelial-mesenchymal transition and tumor metastasis. J Biol Chem. 288:10241–10253. 2013. View Article : Google Scholar : PubMed/NCBI | |
Siemens H, Jackstadt R, Hünten S, Kaller M, Menssen A, Götz U and Hermeking H: miR-34 and SNAIL form a double-negative feedback loop to regulate epithelial-mesenchymal transitions. Cell Cycle. 10:4256–4271. 2011. View Article : Google Scholar : PubMed/NCBI | |
Saito YD, Jensen AR, Salgia R and Posadas EM: Fyn: A novel molecular target in cancer. Cancer. 116:1629–1637. 2010. View Article : Google Scholar : PubMed/NCBI | |
Jechlinger M, Sommer A, Moriggl R, Seither P, Kraut N, Capodiecci P, Donovan M, Cordon-Cardo C, Beug H and Grünert S: Autocrine PDGFR signaling promotes mammary cancer metastasis. J Clin Invest. 116:1561–1570. 2006. View Article : Google Scholar : PubMed/NCBI | |
Choi YL, Bocanegra M, Kwon MJ, Shin YK, Nam SJ, Yang JH, Kao J, Godwin AK and Pollack JR: LYN is a mediator of epithelial-mesenchymal transition and a target of dasatinib in breast cancer. Cancer Res. 70:2296–2306. 2010. View Article : Google Scholar : PubMed/NCBI | |
Hutterer M, Knyazev P, Abate A, Reschke M, Maier H, Stefanova N, Knyazeva T, Barbieri V, Reindl M, Muigg A, et al: Axl and growth arrest-specific gene 6 are frequently overexpressed in human gliomas and predict poor prognosis in patients with glioblastoma multiforme. Clin Cancer Res. 14:130–138. 2008. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Ye X, Tan C, Hongo JA, Zha J, Liu J, Kallop D, Ludlam MJ and Pei L: Axl as a potential therapeutic target in cancer: Role of Axl in tumor growth, metastasis and angiogenesis. Oncogene. 28:3442–3455. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zhang YX, Knyazev PG, Cheburkin YV, Sharma K, Knyazev YP, Orfi L, Szabadkai I, Daub H, Kéri G and Ullrich A: AXL is a potential target for therapeutic intervention in breast cancer progression. Cancer Res. 68:1905–1915. 2008. View Article : Google Scholar : PubMed/NCBI | |
Asiedu MK, Beauchamp-Perez FD, Ingle JN, Behrens MD, Radisky DC and Knutson KL: AXL induces epithelial-to-mesenchymal transition and regulates the function of breast cancer stem cells. Oncogene. 33:1316–1324. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wu X, Liu X, Koul S, Lee CY, Zhang Z and Halmos B: AXL kinase as a novel target for cancer therapy. Oncotarget. 5:9546–9563. 2014. View Article : Google Scholar : PubMed/NCBI | |
Taglienti CA, Wysk M and Davis RJ: Molecular cloning of the epidermal growth factor-stimulated protein kinase p56 KKIAMRE. Oncogene. 13:2563–2574. 1996.PubMed/NCBI | |
Gomi H, Sun W, Finch CE, Itohara S, Yoshimi K and Thompson RF: Learning induces a CDC2-related protein kinase, KKIAMRE. J Neurosci. 19:9530–9537. 1999.PubMed/NCBI |