1
|
National Comprehensive Cancer Network
(NCNN), . Breat cancerNCCN Clinical Practice Guidelines in
Oncology. 3rd. NCNN; Fort Washington, PA, USA: 2013, PubMed/NCBI
|
2
|
Ward C, Langdon SP, Mullen P, Harris AL,
Harrison DJ, Supuran CT and Kunkler IH: New strategies for
targeting the hypoxic tumour microenvironment in breast cancer.
Cancer Treat Rev. 39:171–179. 2013. View Article : Google Scholar : PubMed/NCBI
|
3
|
Rademakers SE, Span PN, Kaanders JH, Sweep
FC, van der Kogel AJ and Bussink J: Molecular aspects of tumour
hypoxia. Mol Oncol. 2:41–53. 2008. View Article : Google Scholar : PubMed/NCBI
|
4
|
Vaupel P, Mayer A and Höckel M: Tumor
hypoxia and malignant progression. Methods Enzymol. 381:335–354.
2004. View Article : Google Scholar : PubMed/NCBI
|
5
|
Rundqvist H and Johnson RS: Tumour
oxygenation: Implications for breast cancer prognosis. J Intern
Med. 274:105–112. 2013. View Article : Google Scholar : PubMed/NCBI
|
6
|
Trédan O, Galmarini CM, Patel K and
Tannock IF: Drug resistance and the solid tumor microenvironment. J
Natl Cancer Inst. 99:1441–1454. 2007. View Article : Google Scholar : PubMed/NCBI
|
7
|
Vaupel P and Mayer A: Hypoxia in cancer:
Significance and impact on clinical outcome. Cancer Metastasis Rev.
26:225–239. 2007. View Article : Google Scholar : PubMed/NCBI
|
8
|
Nordsmark M, Overgaard M and Overgaard J:
Pretreatment oxygenation predicts radiation response in advanced
squamous cell carcinoma of the head and neck. Radiother Oncol.
41:31–39. 1996. View Article : Google Scholar : PubMed/NCBI
|
9
|
Denny WA: The role of hypoxia-activated
prodrugs in cancer therapy. Lancet Oncol. 1:25–29. 2000. View Article : Google Scholar : PubMed/NCBI
|
10
|
Guise CP, Mowday AM, Ashoorzadeh A, Yuan
R, Lin WH, Wu DH, Smaill JB, Patterson AV and Ding K: Bioreductive
prodrugs as cancer therapeutics: targeting tumor hypoxia. Chin J
Cancer. 33:80–86. 2014. View Article : Google Scholar : PubMed/NCBI
|
11
|
Liapis V, Labrinidis A, Zinonos I, Hay S,
Ponomarev V, Panagopoulos V, DeNichilo M, Ingman W, Atkins GJ,
Findlay DM, et al: Hypoxia-activated pro-drug TH-302 exhibits
potent tumor suppressive activity and cooperates with chemotherapy
against osteosarcoma. Cancer Lett. 357:160–169. 2015. View Article : Google Scholar : PubMed/NCBI
|
12
|
Kimura H, Braun RD, Ong ET, Hsu R, Secomb
TW, Papahadjopoulos D, Hong K and Dewhirst MW: Fluctuation in red
cell flux in tumor microvessels can lead to transient hypoxia and
reoxygenation in tumor parenchyma. Cancer Res. 56:5522–5528.
1996.PubMed/NCBI
|
13
|
Bennett MH, Feldmeier J, Smee R and
Milross C: Hyperbaric oxygenation for tumor sensitization to
radiotherapy. Cochrane Database Syst Rev. 18:CD0050072012.
|
14
|
Overgaard J, Eriksen JG, Nordsmark M,
Alsner J and Horsman MR: Danish Head and Neck Cancer Study Group:
Plasma osteopontin, hypoxia, and response to the hypoxia sensitiser
nimorazole in radiotherapy of head and neck cancer: Results from
the DAHANCA 5 randomised double-blind placebo-controlled trial.
Lancet Oncol. 6:757–764. 2005. View Article : Google Scholar : PubMed/NCBI
|
15
|
Xuhui Ma, Zhenjing Miao and Hongyun Wang:
Some problems with hyperbaric oxygenation in treating cancers.
Linchuang Junyi Zazhi. 38:862–864. 2010.
|
16
|
Williamson SK, Crowley JJ, Lara PN Jr,
McCoy J, Lau DH, Tucker RW, Mills GM and Gandara DR: Southwest
Oncology Group Trial S0003: Phase III trial of paclitaxel plus
carboplatin with or without tirapazamine in advanced non-small-cell
lung cancer: Southwest Oncology Group Trial S0003. J Clin Oncol.
23:9097–9104. 2005. View Article : Google Scholar : PubMed/NCBI
|
17
|
Jevamohan P, Hasumura T, Nagaoka Y,
Yoshida Y, Maekawa T and Kumar DS: Accelerated killing of cancer
cells using a multifunctional single-walled carbon nanotube-based
system for targeted drug delivery in combination with photothermal
therapy. Int J Nanomedicine. 8:2653–2667. 2013.PubMed/NCBI
|
18
|
Das M, Datir SR, Singh RP and Jain S:
Augmented anticancer activity of a targeted, intracellularly
activatable, theranostic nanomedicine based on fluorescent and
radiolabeled, methotrexate-folic Acid-multiwalled carbon nanotube
conjugate. Mol Pharm. 10:2543–2557. 2013. View Article : Google Scholar : PubMed/NCBI
|
19
|
Lin Y, Taylor S, Li H, Fernando KA Shiral,
Qu L, Wang W, Gu L, Zhou B and Sun Y: Advances toward
bioapplications of carbon nanotubes. J Mater Chem. 14:527–541.
2004. View Article : Google Scholar
|
20
|
Bianco A, Kostarelos K and Prato M:
Applications of carbon nanotubes in drug delivery. Curr Opin Chem
Biol. 9:674–679. 2005. View Article : Google Scholar : PubMed/NCBI
|
21
|
Prato M, Kostarelos K and Bianco A:
Functionalized carbon nanotubes in drug design and discovery. Acc
Chem Res. 41:60–68. 2008. View Article : Google Scholar : PubMed/NCBI
|
22
|
Xu J, Zhu MH, Liu JJ and Zhao Z: The
state-of-art of researches on rare earth surface engineering and
its tribological applications. China Surface Engineering. 1:20–23.
2001.
|
23
|
Sun ZY and Cheng XH: Friction/wear
behaviors of rare earth treated carbon nanotubes/amino silane
self-assembled composite film on silicon substrate. Tribology.
31:156–160. 2011.
|
24
|
Ravichandran P, Baluchamy S, Gopikrishnan
R, Biradar S, Ramesh V, Goornavar V, Thomas R, Wilson BL, Jeffers
R, Hall JC and Ramesh GT: Pulmonary biocompatibility assessment of
inhaled single-wall and multiwall carbon nanotubes in BALB/c mice.
J Biol Chem. 286:29725–29733. 2011. View Article : Google Scholar : PubMed/NCBI
|
25
|
Lam CW, James JT, McCluskey R, Arepalli S
and Hunter RL: A review of carbon nanotube toxicity and assessment
of potential occupational and environmental health risks. Crit Rev
Toxicol. 36:189–217. 2006. View Article : Google Scholar : PubMed/NCBI
|
26
|
Wang Y, Lin Q, Wu K, Zhu M, Lu Y, Chen J,
Huang S, Cheng X and Weng Z: Experimental study of bio-security of
functionalized single-walled and multi-walled carbon nanotubes.
Nano Biomed Eng. 3:249–255. 2011. View Article : Google Scholar
|
27
|
Eccles SA, Aboaqye EO, Ali S, Anderson AS,
Armes J, Berditchevski F, Blaydes JP, Brennan K, Brown NJ, Bryant
HE, et al: Critical research gaps and translational priorities for
the successful prevention and treatment of breast cancer. Breast
Cancer Res. 15:R922013. View Article : Google Scholar : PubMed/NCBI
|
28
|
Gray LH, Conger AD, Ebert M, Hornsey S and
Scott OC: The concentration of oxygen dissolved in tissues at the
time of irradiation as a factor in radiotherapy. Br J Radiol.
26:638–648. 1953. View Article : Google Scholar : PubMed/NCBI
|
29
|
Bush RS, Jenkin RD, Allt WE, Beale FA,
Bean H, Dembo AJ and Pringle JF: Definitive evidence for hypoxic
cells influence in the cure in cancer therapy. Br J Cancer Suppl.
3:302–306. 1978.PubMed/NCBI
|
30
|
Brown JM: Evidence for acutely hypoxic
cells in mouse tumor, and a possible mechanism of reoxygenation. Br
J Radiol. 52:650–656. 1979. View Article : Google Scholar : PubMed/NCBI
|
31
|
Tan A, Yildirimer L, Rajadas J, De La Peña
H, Pastorin G and Seifalian A: Quantum dots and carbon nanotubes in
oncology: A review on emerging theranostic applications in
nanomedicine. Nanomedicine (Lond). 6:1101–1114. 2016. View Article : Google Scholar
|
32
|
Bregoli L, Movia D, Gavigan-Imedio JD,
Lysaght J, Reynolds J and Prina-Mello A: Nanomedicine applied to
translational oncology: A future perspective on cancer treatment.
Nanomedicine. 12:81–103. 2015.PubMed/NCBI
|
33
|
Herreros E, Morales S, Cortés C, Cabaña M,
Peñaloza JP, Jara L, Geraldo D, Otero C and Fernández-Ramires R:
Advances in nanomedicine towards clinical application in oncology
and immunology. Curr Pharm Biotechnol. 15:864–879. 2014. View Article : Google Scholar : PubMed/NCBI
|
34
|
Joshi P, Chakraborti S, Ramirez-Vick JE,
Ansari ZA, Shanker V, Chakrabarti P and Singh SP: The anticancer
activity of chloroquine-gold nanoparticles against MCF-7 breast
cancer cells. Colloids Surf B Biointerfaces. 95:195–200. 2012.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Wang H, Li F, Du C, Wang H, Mahato RI and
Huang Y: Doxorubicin and lapatinib combination nanomedicine for
treating resistant breast cancer. Mol Pharm. 11:2600–2611. 2014.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Leamon CP and Reddy JA: Folate-targeted
chemotherapy. Drug Deliv Rev. 56:1127–1141. 2004. View Article : Google Scholar
|
37
|
Sudimack J and Lee RJ: Targeted drug
delivery via the folate receptor. Adv Drug Deliv Rev. 41:147–162.
2000. View Article : Google Scholar : PubMed/NCBI
|
38
|
Low PS and Kularatne SA: Folate-targeted
therapeutic and imaging agents for cancer. Curr Opin Chem Biol.
13:256–262. 2009. View Article : Google Scholar : PubMed/NCBI
|
39
|
Wang S and Low PS: Folate-mediated
targeting antineoplastic drugs, imaging agents and nucleic acids to
cancer cells. J Control Release. 53:39–48. 1998. View Article : Google Scholar : PubMed/NCBI
|
40
|
Cheng X: A preparation method of rare
earth modified-folic acid-chitosan-SWCNTs. China Patent
103,007,285. Filed July 20, 2012; issued. November 24–2012
|
41
|
Korsmeyer SJ, Shutter JR, Veis DJ, Merry
DE and Oltvai ZN: Bcl-2/Bax: A rheostat that regulates an
anti-oxidant pathway and cell death. Semin Cancer Biol.
4:327–25332. 1993.PubMed/NCBI
|
42
|
Lindsay J, Esposti MD and Gilmore AP:
Bcl-2 proteins and mitochondria-specificity in membrane targeting
for death. Biochim Biophys Acta. 1813:532–539. 2001. View Article : Google Scholar
|
43
|
Chinnaiyan AM, Orth K, O'Rourke K, Duan H,
Poirier GG and Dixit VM: Molecular ordering of the cell death
pathway. Bcl-2 and Bcl-xL function upstream of the CED-3-like
apoptotic proteases. J Biol Chem. 271:4573–4576. 1996.PubMed/NCBI
|
44
|
Kitanaka C, Namiki T, Noguchi K, Mochizuki
T, Kagaya S, Chi S, Hayashi A, Asai A, Tsujimoto Y and Kuchino Y:
Caspase-dependent apoptosis of COS-7 cells induced by Bax
overexpression: Differential effects of Bcl-2 and Bcl-xL on
Bax-induced caspase activation and apoptosis. Oncogene.
15:1763–1772. 1997. View Article : Google Scholar : PubMed/NCBI
|
45
|
Shiu LY, Chang LC, Liang CH, Huang YS,
Sheu HM and Kuo KW: Solamargine induces apoptosis and sensitizes
breast cancer cells to cisplatin. Food Chem Toxicol. 45:2155–2164.
2007. View Article : Google Scholar : PubMed/NCBI
|
46
|
de Moraes G Nestal, Vasconcelos FC, Delbue
D, Mognol GP, Sternberg C, Viola JP and Maia RC: Doxorubicin
induces cell death in breast cancer cells regardless of survivin
and XIAP expression levels. Eur J Cell Biol. 92:247–256. 2013.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Lee JW, Bae SH, Jeong JW, Kim SH and Kim
KW: Hypoxia-inducible factor (HIF-1) alpha: Its protein stability
and biological functions. Exp Mol Med. 36:1–12. 2004. View Article : Google Scholar : PubMed/NCBI
|
48
|
Choi KS, Bae MK, Jeong JW, Moon HE and Kim
KW: Hypoxia-induced angiogenesis during carcinogenesis. J Biochem
Mol Biol. 36:120–127. 2003.PubMed/NCBI
|
49
|
Powell S and McMillan TJ: DNA damage and
repair following treatment with ionizing radiation. Radiother
Oncol. 19:95–108. 1990. View Article : Google Scholar : PubMed/NCBI
|
50
|
Santivasi WL and Xia F: Ionizing
radiation-induced DNA damage, response, and repair. Antioxid Redox
Signal. 21:251–259. 2014. View Article : Google Scholar : PubMed/NCBI
|
51
|
Bryant PE: Repair and chromosomal damage.
Radiother Oncol. 72:251–256. 2004. View Article : Google Scholar : PubMed/NCBI
|
52
|
Kavanagh JN, Redmond KM, Schettino G and
Prise KM: DNA double strand break repair: A radiation perspective.
Antioxid Redox Signal. 18:2458–2472. 2013. View Article : Google Scholar : PubMed/NCBI
|
53
|
Deschner EE and Gray LH: Influence of
oxygen tension on x-ray-induced chromosomal damage in Ehrlich
ascites tumor cells irradiated in vitro and in vivo. Radiat Res.
11:115–146. 1959. View Article : Google Scholar : PubMed/NCBI
|
54
|
Gray LH, Conger AD, Ebert M, Hornsey S and
Scott OC: The concentration of oxygen dissolved in tissue at the
time of irradiation as a factor in radiotherapy. Br J Radiol.
26:638–648. 1953. View Article : Google Scholar : PubMed/NCBI
|
55
|
Choudhury A, Cuddihy A and Bristow RG:
Radiation and new molecular agents part 1: Targeting ATM-ATR
checkpoints, DNA repair, and the proteasome. Semin Radiat Oncol.
16:51–58. 2006. View Article : Google Scholar : PubMed/NCBI
|
56
|
Lieber MR: The mechanism of human
nonhomologous DNA end joining. J Biol Chem,. 283:1–5. 2008.
View Article : Google Scholar
|