1
|
Schwarzenbach H, Nishida N, Calin GA and
Pantel K: Clinical relevance of circulating cell-free microRNAs in
cancer. Nat Rev Clin Oncol. 11:145–156. 2014. View Article : Google Scholar : PubMed/NCBI
|
2
|
Sozzi G, Boeri M, Rossi M, Verri C,
Suatoni P, Bravi F, Roz L, Conte D, Grassi M, Sverzellati N, et al:
Clinical utility of a plasma-based miRNA signature classifier
within computed tomography lung cancer screening: A correlative
MILD trial study. J Clin Oncol. 32:768–773. 2014. View Article : Google Scholar : PubMed/NCBI
|
3
|
Zanutto S, Pizzamiglio S, Ghilotti M,
Bertan C, Ravagnani F, Perrone F, Leo E, Pilotti S, Verderio P,
Gariboldi M and Pierotti MA: Circulating miR-378 in plasma: A
reliable, hemolysis-independent biomarker for colorectal cancer. Br
J Cancer. 110:1001–1007. 2014. View Article : Google Scholar : PubMed/NCBI
|
4
|
Pritchard CC, Kroh E, Wood B, Arroyo JD,
Dougherty KJ, Miyaji MM, Tait JF and Tewari M: Blood cell origin of
circulating microRNAs: A cautionary note for cancer biomarker
studies. Cancer Prev Res (Phila). 5:492–497. 2012. View Article : Google Scholar : PubMed/NCBI
|
5
|
Kirschner MB, Kao SC, Edelman JJ,
Armstrong NJ, Vallely MP, van Zandwijk N and Reid G: Hemolysis
during sample preparation alters microRNA content of plasma. PLoS
One. 6:e241452011. View Article : Google Scholar : PubMed/NCBI
|
6
|
Kirschner MB, Edelman JJ, Kao SC, Vallely
MP, van Zandwijk N and Reid G: The impact of hemolysis on cell-free
microRNA biomarkers. Front Genet. 4:942013. View Article : Google Scholar : PubMed/NCBI
|
7
|
Appierto V, Callari M, Cavadini E, Morelli
D, Daidone MG and Tiberio P: A lipemia-independent
NanoDrop(®)-based
score to identify hemolysis in plasma and serum samples.
Bioanalysis. 6:1215–1226. 2014. View Article : Google Scholar : PubMed/NCBI
|
8
|
MacLellan SA, MacAulay C, Lam S and Garnis
C: Pre-profiling factors influencing serum microRNA levels. BMC
Clin Pathol. 14:272014. View Article : Google Scholar : PubMed/NCBI
|
9
|
Verderio P, Bottelli S, Ciniselli CM,
Pierotti MA, Gariboldi M and Pizzamiglio S: NqA: An R-based
algorithm for the normalization and analysis of microRNA
quantitative real-time polymerase chain reaction data. Anal
Biochem. 461:7–9. 2014. View Article : Google Scholar : PubMed/NCBI
|
10
|
Pizzamiglio S, Bottelli S, Ciniselli CM,
Zanutto S, Bertan C, Gariboldi M, Pierotti MA and Verderio P: A
normalization strategy for the analysis of plasma microRNA qPCR
data in colorectal cancer. Int J Cancer. 134:2016–2018. 2014.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) Method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Gibbons JD and Chakraborti S:
Nonparametric Statistical Inference. 4th. Marcel Dekker; New York:
pp. 247–257. 2003
|
13
|
Pizzamiglio S, Cossa G, Gatti L, Beretta
GL, Corna E, Tinelli S, Verderio P and Perego P: Simultaneous
confidence intervals to compare gene expression profiles using ABC
transporter TaqMan microfluidic cards. Oncol Rep. 23:853–860.
2010.PubMed/NCBI
|
14
|
Pizzamiglio S, Verderio P, Orlando C and
Marubini E: Confidence interval for DNA/mRNA concentration by
real-time PCR. Int J Biol Markers. 22:232–236. 2007.PubMed/NCBI
|
15
|
Yamada A, Cox MA, Gaffney KA, Moreland A,
Boland CR and Goel A: Technical factors involved in the measurement
of circulating microRNA biomarkers for the detection of colorectal
neoplasia. PLoS One. 9:e1124812014. View Article : Google Scholar : PubMed/NCBI
|