Genome‑wide analysis of gynecologic cancer: The Cancer Genome Atlas in ovarian and endometrial cancer (Review)
- Authors:
- Moito Iijima
- Kouji Banno
- Ryuichiro Okawa
- Megumi Yanokura
- Miho Iida
- Takashi Takeda
- Haruko Kunitomi‑Irie
- Masataka Adachi
- Kanako Nakamura
- Kiyoko Umene
- Yuya Nogami
- Kenta Masuda
- Eiichiro Tominaga
- Daisuke Aoki
-
Affiliations: Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160‑8582, Japan - Published online on: January 10, 2017 https://doi.org/10.3892/ol.2017.5582
- Pages: 1063-1070
This article is mentioned in:
Abstract
Boveri T: On multipolar mitosis as a means of analysis of the cell nucleus. Neu Folge. 35:67–90. 1902. | |
Stehelin D, Varmus HE, Bishop JM and Vogt PK: DNA related to the transforming gene(s) of avian sarcoma viruses is present in normal avian DNA. Nature. 260:170–173. 1976. View Article : Google Scholar : PubMed/NCBI | |
Tabin CJ, Bradley SM, Bargmann CI, Weinberg RA, Papageorge AG, Scolnick EM, Dhar R, Lowy DR and Chang EH: Mechanism of activation of a human oncogene. Nature. 300:143–149. 1982. View Article : Google Scholar : PubMed/NCBI | |
Vogelstein B, Fearon ER, Hamilton SR, Kern SE, Preisinger AC, Leppert M, Nakamura Y, White R, Smits AM and Bos JL: Genetic alterations during colorectal-tumor development. N Engl J Med. 319:525–532. 1988. View Article : Google Scholar : PubMed/NCBI | |
Dulbecco R: A turning point in cancer research: Sequencing the human genome. Science. 231:1055–1056. 1986. View Article : Google Scholar : PubMed/NCBI | |
Wright CF, Fitzgerald TW, Jones WD, Clayton S, McRae JF, van Kogelenberg M, King DA, Ambridge K, Barrett DM, Bayzetinova T, et al: Genetic diagnosis of developmental disorders in the DDD study: A scalable analysis of genome-wide research data. Lancet. 385:1305–1314. 2015. View Article : Google Scholar : PubMed/NCBI | |
Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, et al: Mutations of the BRAF gene in human cancer. Nature. 417:949–954. 2002. View Article : Google Scholar : PubMed/NCBI | |
Samuels Y, Wang Z, Bardelli A, Silliman N, Ptak J, Szabo S, Yan H, Gazdar A, Powell SM, Riggins GJ, et al: High frequency of mutations of the PIK3CA gene in human cancers. Science. 304:5542004. View Article : Google Scholar : PubMed/NCBI | |
Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, Harris PL, Haserlat SM, Supko JG, Haluska FG, et al: Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med. 350:2129–2139. 2004. View Article : Google Scholar : PubMed/NCBI | |
Paez JG, Jänne PA, Lee JC, Tracy S, Greulich H, Gabriel S, Herman P, Kaye FJ, Lindeman N, Boggon TJ, et al: EGFR mutations in lung cancer: Correlation with clinical response to gefitinib therapy. Science. 304:1497–1500. 2004. View Article : Google Scholar : PubMed/NCBI | |
Pao W, Miller V, Zakowski M, Doherty J, Politi K, Sarkaria I, Singh B, Heelan R, Rusch V, Fulton L, et al: EGF receptor gene mutations are common in lung cancers from ‘never smokers’ and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci USA. 101:13306–13311. 2004. View Article : Google Scholar : PubMed/NCBI | |
Akbani R, Ng PK, Werner HM, Shahmoradgoli M, Zhang F, Ju Z, Liu W, Yang JY, Yoshihara K, Li J, et al: A pan-cancer proteomic perspective on The Cancer Genome Atlas. Nat Commun. 5:38872014. View Article : Google Scholar : PubMed/NCBI | |
The future of cancer genomics. Nat Med. 21:992015. View Article : Google Scholar : PubMed/NCBI | |
Garraway LA and Lander ES: Lessons from the cancer genome. Cell. 153:17–37. 2013. View Article : Google Scholar : PubMed/NCBI | |
Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr and Kinzler KW: Cancer genome landscapes. Science. 339:1546–1558. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wheeler DA and Wang L: From human genome to cancer genome: The first decade. Genome Res. 23:1054–1062. 2013. View Article : Google Scholar : PubMed/NCBI | |
Cancer Genome Atlas Research Network; Weinstein JN, Collisson EA, Mills GB, Shaw KR, Ozenberger BA, Ellrott K, Shmulevich I, Sander C and Stuart JM: The cancer genome atlas pan-cancer analysis project. Nat Genet. 45:1113–1120. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kong J, Cooper LA, Wang F, Gutman DA, Gao J, Chisolm C, Sharma A, Pan T, Van Meir EG, Kurc TM, et al: Integrative, multimodal analysis of glioblastoma using TCGA molecular data, pathology images and clinical outcomes. IEEE Trans Biomed Eng. 58:3469–3474. 2011. View Article : Google Scholar : PubMed/NCBI | |
Cancer Genome Atlas Research Network, . Integrated genomic analyses of ovarian carcinoma. Nature. 474:609–615. 2011. View Article : Google Scholar : PubMed/NCBI | |
Cancer Genome Atlas Research Network, . Kandoth C, Schultz N, Cherniack AD, Akbani R, Liu Y, Shen H, Robertson AG, Pashtan I, Shen R, et al: Integrated genomic characterization of endometrial carcinoma. Nature. 497:67–73. 2013. View Article : Google Scholar : PubMed/NCBI | |
Heintz AP, Odicino F, Maisonneuve P, Quinn MA, Benedet JL, Creasman WT, Ngan HY, Pecorelli S and Beller U: Carcinoma of the ovary. FIGO 26th annual report on the results of treatment in gynecological cancer. Int J Gynaecol Obstet. 95:(Suppl 1). S161–S192. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kuo KT, Mao TL, Jones S, Veras E, Ayhan A, Wang TL, Glas R, Slamon D, Velculescu VE, Kuman RJ and Shih Ie M: Frequent activating mutations of PIK3CA in ovarian clear cell carcinoma. Am J Pathol. 174:1597–1601. 2009. View Article : Google Scholar : PubMed/NCBI | |
Tan DS, Iravani M, McCluggage WG, Lambros MB, Milanezi F, Mackay A, Gourley C, Geyer FC, Vatcheva R, Millar J, et al: Genomic analysis reveals the molecular heterogeneity of ovarian clear cell carcinomas. Clin Cancer Res. 17:1521–1534. 2011. View Article : Google Scholar : PubMed/NCBI | |
Jones S, Wang TL, Shih Ie M, Mao TL, Nakayama K, Roden R, Glas R, Slamon D, Diaz LA Jr, Vogelstein B, et al: Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma. Science. 330:228–231. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wiegand KC, Shah SP, Al-Agha OM, Zhao Y, Tse K, Zeng T, Senz J, McConechy MK, Anglesio MS, Kalloger SE, et al: ARID1A mutations in endometriosis-associated ovarian carcinomas. N Engl J Med. 363:1532–1543. 2010. View Article : Google Scholar : PubMed/NCBI | |
Mohrmann L and Verrijzer CP: Composition and functional specificity of SWI2/SNF2 class chromatin remodeling complexes. Biochim Biophys Acta. 1681:59–73. 2005. View Article : Google Scholar : PubMed/NCBI | |
Katagiri A, Nakayama K, Rahman MT, Rahman M, Katagiri H, Nakayama N, Ishikawa M, Ishibashi T, Iida K, Kobayashi H, et al: Loss of ARID1A expression is related to shorter progression-free survival and chemoresistance in ovarian clear cell carcinoma. Mod Pathol. 25:282–288. 2012.PubMed/NCBI | |
Yamaguchi K, Mandai M, Oura T, Matsumura N, Hamanishi J, Baba T, Matsui S, Murphy SK and Konishi I: Identification of an ovarian clear cell carcinoma gene signature that reflects inherent disease biology and the carcinogenic processes. Oncogene. 29:1741–1752. 2010. View Article : Google Scholar : PubMed/NCBI | |
Tsuchiya A, Sakamoto M, Yasuda J, Chuma M, Ohta T, Ohki M, Yasugi T, Taketani Y and Hirohashi S: Expression profiling in ovarian clear cell carcinoma: Identification of hepatocyte nuclear factor-1 beta as a molecular marker and a possible molecular target for therapy of ovarian clear cell carcinoma. Am J Pathol. 163:2503–2512. 2003. View Article : Google Scholar : PubMed/NCBI | |
Yamaguchi K, Huang Z, Matsumura N, Mandai M, Okamoto T, Baba T, Konishi I, Berchuck A and Murphy SK: Epigenetic determinants of ovarian clear cell carcinoma biology. Int J Cancer. 135:585–597. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yamaguchi K, Mandai M, Toyokuni S, Hamanishi J, Higuchi T, Takakura K and Fujii S: Contents of endometriotic cysts, especially the high concentration of free iron, are a possible cause of carcinogenesis in the cysts through the iron-induced persistent oxidative stress. Clin Cancer Res. 14:32–40. 2008. View Article : Google Scholar : PubMed/NCBI | |
Barger CJ, Zhang W, Hillman J, Stablewski AB, Higgins MJ, Vanderhyden BC, Odunsi K and Karpf AR: Genetic determinants of FOXM1 overexpression in epithelial ovarian cancer and functional contribution to cell cycle progression. Oncotarget. 6:27613–27627. 2015. View Article : Google Scholar : PubMed/NCBI | |
Barsotti AM and Prives C: Pro-proliferative FOXM1 is a target of p53-mediated repression. Oncogene. 28:4295–4305. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ma RY, Tong TH, Cheung AM, Tsang AC, Leung WY and Yao KM: Raf/MEK/MAPK signaling stimulates the nuclear translocation and transactivating activity of FOXM1c. J Cell Sci. 118:795–806. 2005. View Article : Google Scholar : PubMed/NCBI | |
Tan Y, Raychaudhuri P and Costa RH: Chk2 mediates stabilization of the FOXM1 transcription factor to stimulate expression of DNA repair genes. Mol Cell Biol. 27:1007–1016. 2007. View Article : Google Scholar : PubMed/NCBI | |
Lane DP: Cancer. p53, guardian of the genome. Nature. 358:15–16. 1992. View Article : Google Scholar : PubMed/NCBI | |
Brachova P, Mueting SR, Carlson MJ, Goodheart MJ, Button AM, Mott SL, Dai D, Thiel KW, Devor EJ and Leslie KK: TP53 oncomorphic mutations predict resistance to platinum- and taxane-based standard chemotherapy in patients diagnosed with advanced serous ovarian carcinoma. Int J Oncol. 46:607–618. 2015.PubMed/NCBI | |
Brachova P, Mueting SR, Devor EJ and Leslie KK: Oncomorphic TP53 mutations in gynecologic cancers lose the normal protein: Protein interactions with the microRNA microprocessing complex. J Cancer Ther. 5:506–516. 2014. View Article : Google Scholar : PubMed/NCBI | |
Liu G, Yang D, Sun Y, Shmulevich I, Xue F, Sood AK and Zhang W: Differing clinical impact of BRCA1 and BRCA2 mutations in serous ovarian cancer. Pharmacogenomics. 13:1523–1535. 2012. View Article : Google Scholar : PubMed/NCBI | |
Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB, Santarosa M, Dillon KJ, Hickson I, Knights C, et al: Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature. 434:917–921. 2005. View Article : Google Scholar : PubMed/NCBI | |
Scully R, Puget N and Vlasakova K: DNA polymerase stalling, sister chromatid recombination and the BRCA genes. Oncogene. 19:6176–6183. 2000. View Article : Google Scholar : PubMed/NCBI | |
Kurman RJ and Shih Ie M: Molecular pathogenesis and extraovarian origin of epithelial ovarian cancer: Shifting the paradigm. Hum Pathol. 42:918–931. 2011. View Article : Google Scholar : PubMed/NCBI | |
Shah RH, Scott SN, Brannon AR, Levine DA, Lin O and Berger MF: Comprehensive mutation profiling by next-generation sequencing of effusion fluids from patients with high-grade serous ovarian carcinoma. Cancer Cytopathol. 123:289–297. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kurman RJ and Shih Ie M: Molecular pathogenesis and extraovarian origin of epithelial ovarian cancer-shifting the paradigm. Hum Pathol. 42:918–931. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wiedemeyer WR, Beach JA and Karlan BY: Reversing platinum resistance in high-grade serous ovarian carcinoma: Targeting BRCA and the homologous recombination system. Front Oncol. 4:342014. View Article : Google Scholar : PubMed/NCBI | |
Rao SS, O'Neil J, Liberator CD, Hardwick JS, Dai X, Zhang T, Tyminski E, Yuan J, Kohl NE, Richon VM, et al: Inhibition of NOTCH signaling by gamma secretase inhibitor engages the RB pathway and elicits cell cycle exit in T-cell acute lymphoblastic leukemia cells. Cancer Res. 69:3060–3068. 2009. View Article : Google Scholar : PubMed/NCBI | |
Jones S, Wang TL, Kurman RJ, Nakayama K, Velculescu VE, Vogelstein B, Kinzler KW, Papadopoulos N and Shih Ie M: Low-grade serous carcinomas of the ovary contain very few point mutations. J Pathol. 226:413–420. 2011. View Article : Google Scholar : PubMed/NCBI | |
Tothill RW, Tinker AV, George J, Brown R, Fox SB, Lade S, Johnson DS, Trivett MK, Etemadmoghadam D, Locandro B, et al: Novel molecular subtypes of serous and endometrioid ovarian cancer linked to clinical outcome. Clin Cancer Res. 14:5198–5208. 2008. View Article : Google Scholar : PubMed/NCBI | |
Rajagopalan H, Bardelli A, Lengauer C, Kinzler KW, Vogelstein B and Velculescu VE: Tumorigenesis: RAF/RAS oncogenes and mismatch-repair status. Nature. 418:9342002. View Article : Google Scholar : PubMed/NCBI | |
Singer G, Oldt R III, Cohen Y, Wang BG, Sidransky D, Kurman RJ and Shih Ie M: Mutations in BRAF and KRAS characterize the development of low-grade ovarian serous carcinoma. J Natl Cancer Inst. 95:484–486. 2003. View Article : Google Scholar : PubMed/NCBI | |
Kannan K, Coarfa C, Chao PW, Luo L, Wang Y, Brinegar AE, Hawkins SM, Milosavljevic A, Matzuk MM and Yen L: Recurrent BCAM-AKT2 fusion gene leads to a constitutively activated AKT2 fusion kinase in high-grade serous ovarian carcinoma. Proc Natl Acad Sci USA. 112:E1272–E1277. 2015. View Article : Google Scholar : PubMed/NCBI | |
Buchanan EM, Weinstein LC and Hillson C: Endometrial cancer. Am Fam Physician. 80:1075–1080. 2009.PubMed/NCBI | |
Setiawan VW, Yang HP, Pike MC, McCann SE, Yu H, Xiang YB, Wolk A, Wentzensen N, Weiss NS, Webb PM, et al: Type I and II endometrial cancers: Have they different risk factors? J Clin Oncol. 31:2607–2618. 2013. View Article : Google Scholar : PubMed/NCBI | |
Matsumura N, Huang Z, Mori S, Baba T, Fujii S, Konishi I, Iversen ES, Berchuck A and Murphy SK: Epigenetic suppression of the TGF-beta pathway revealed by transcriptome profiling in ovarian cancer. Genome Res. 21:74–82. 2011. View Article : Google Scholar : PubMed/NCBI | |
Talhouk A, McConechy MK, Leung S, Li-Chang HH, Kwon JS, Melnyk N, Yang W, Senz J, Boyd N, Karnezis AN, et al: A clinically applicable molecular-based classification for endometrial cancers. Br J Cancer. 113:299–310. 2015. View Article : Google Scholar : PubMed/NCBI | |
Le Gallo M and Bell DW: The emerging genomic landscape of endometrial cancer. Clin Chem. 60:98–110. 2014. View Article : Google Scholar : PubMed/NCBI | |
Garcia-Dios DA, Lambrechts D, Coenegrachts L, Vandenput I, Capoen A, Webb PM, Ferguson K, Akslen LA, Claes B, Vergote I, et al: Australian National Endometrial Cancer Study Group: High-throughput interrogation of PIK3CA, PTEN, KRAS, FBXW7 and TP53 mutations in primary endometrial carcinoma. Gynecol Oncol. 128:327–334. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hoang LN, McConechy MK, Köbel M, Han G, Rouzbahman M, Davidson B, Irving J, Ali RH, Leung S, McAlpine JN, et al: Histotype-genotype correlation in 36 high-grade endometrial carcinomas. Am J Surg Pathol. 37:1421–1432. 2013. View Article : Google Scholar : PubMed/NCBI | |
Athanassiadou P, Athanassiades P, Grapsa D, Gonidi M, Athanassiadou AM, Stamati PN and Patsouris E: The prognostic value of PTEN, p53, and beta-catenin in endometrial carcinoma: A prospective immunocytochemical study. Int J Gynecol Cancer. 17:697–704. 2007. View Article : Google Scholar : PubMed/NCBI | |
Kuhn E, Wu RC, Guan B, Wu G, Zhang J, Wang Y, Song L, Yuan X, Wei L, Roden RB, et al: Identification of molecular pathway aberrations in uterine serous carcinoma by genome-wide analyses. J Natl Cancer Inst. 104:1503–1513. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhao S, Choi M, Overton JD, Bellone S, Roque DM, Cocco E, Guzzo F, English DP, Varughese J, Gasparrini S, et al: Landscape of somatic single-nucleotide and copy-number mutations in uterine serous carcinoma. Proc Natl Acad Sci USA. 110:2916–2921. 2013. View Article : Google Scholar : PubMed/NCBI | |
Le Gallo M, O'Hara AJ, Rudd ML, Urick ME, Hansen NF, O'Neil NJ, Price JC, Zhang S, England BM, Godwin AK, et al: Exome sequencing of serous endometrial tumors identifies recurrent somatic mutations in chromatin-remodeling and ubiquitin ligase complex genes. Nat Genet. 44:1310–1315. 2012. View Article : Google Scholar : PubMed/NCBI | |
Giannakis M, Hodis E, Mu X Jasmine, Yamauchi M, Rosenbluh J, Cibulskis K, Saksena G, Lawrence MS, Qian ZR, Nishihara R, et al: RNF43 is frequently mutated in colorectal and endometrial cancers. Nat Genet. 46:1264–1266. 2014. View Article : Google Scholar : PubMed/NCBI | |
Markowska A, Pawałowska M, Lubin J and Markowska J: Signalling pathways in endometrial cancer. Contemp Oncol (Pozn). 18:143–148. 2014.PubMed/NCBI | |
Jo YS, Kim MS, Lee JH, Lee SH, An CH and Yoo NJ: Frequent frameshift mutations in 2 mononucleotide repeats of RNF43 gene and its regional heterogeneity in gastric and colorectal cancers. Hum Pathol. 46:1640–1646. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Patel L, Mills GB, Lu KH, Sood AK, Ding L, Kucherlapati R, Mardis ER, Levine DA, Shmulevich I, et al: Clinical significance of CTNNB1 mutation and Wnt pathway activation in endometrioid endometrial carcinoma. J Natl Cancer Inst. 106:dju2452014. View Article : Google Scholar : PubMed/NCBI | |
Carvajal-Carmona LG, O'Mara TA, Painter JN, Lose FA, Dennis J, Michailidou K, Tyrer JP, Ahmed S, Ferguson K, Healey CS, et al: Candidate locus analysis of the TERT-CLPTM1L cancer risk region on chromosome 5p15 identifies multiple independent variants associated with endometrial cancer risk. Hum Genet. 134:231–245. 2015. View Article : Google Scholar : PubMed/NCBI | |
Fredriksson NJ, Ny L, Nilsson JA and Larsson E: Systematic analysis of noncoding somatic mutations and gene expression alterations across 14 tumor types. Nat Genet. 46:1258–1263. 2014. View Article : Google Scholar : PubMed/NCBI | |
Oshita T, Nagai N and Ohama K: Expression of telomerase reverse transcriptase mRNA and its quantitative analysis in human endometrial cancer. Int J Oncol. 17:1225–1230. 2000.PubMed/NCBI | |
Merritt MA and Cramer DW: Molecular pathogenesis of endometrial and ovarian cancer. Cancer Biomark. 9:287–305. 2010. View Article : Google Scholar : PubMed/NCBI | |
Erickson BK, Kinde I, Dobbin ZC, Wang Y, Martin JY, Alvarez RD, Conner MG, Huh WK, Roden RB, Kinzler KW, et al: Detection of somatic TP53 mutations in tampons of patients with high-grade serous ovarian cancer. Obstet Gynecol. 124:881–885. 2014. View Article : Google Scholar : PubMed/NCBI | |
McConechy MK, Ding J, Cheang MC, Wiegand KC, Senz J, Tone AA, Yang W, Prentice LM, Tse K, Zeng T, et al: Use of mutation profiles to refine the classification of endometrial carcinomas. J Pathol. 228:20–30. 2012.PubMed/NCBI | |
Parkinson DR, Johnson BE and Sledge GW: Making personalized cancer medicine a reality: Challenges and opportunities in the development of biomarkers and companion diagnostics. Clin Cancer Res. 18:619–624. 2012. View Article : Google Scholar : PubMed/NCBI | |
Shih Ie M and Kurman RJ: Ovarian tumorigenesis: A proposed model based on morphological and molecular genetic analysis. Am J Pathol. 164:1511–1518. 2004. View Article : Google Scholar : PubMed/NCBI | |
Piek JM, van Diest PJ, Zweemer RP, et al: Dysplastic changes in prophylactically removed Fallopian tubes of women predisposed to developing ovarian cancer. J Pathol. 195:451–456. 2001. View Article : Google Scholar : PubMed/NCBI | |
Curtin N: PARP inhibitors for anticancer therapy. Biochem Soc Trans. 42:82–88. 2014. View Article : Google Scholar : PubMed/NCBI | |
Cass I, Baldwin RL, Varkey T, Moslehi R, Narod SA and Karlan BY: Improved survival in women with BRCA-associated ovarian carcinoma. Cancer. 97:2187–2195. 2003. View Article : Google Scholar : PubMed/NCBI | |
Ashworth A: A synthetic lethal therapeutic approach: Poly (ADP) ribose polymerase inhibitors for the treatment of cancers deficient in DNA double-strand break repair. J Clin Oncol. 126:3785–3790. 2008. View Article : Google Scholar | |
McCabe N, Turner NC, Lord CJ, Kluzek K, Bialkowska A, Swift S, Giavara S, O'Connor MJ, Tutt AN, Zdzienicka MZ, et al: Deficiency in the repair of DNA damage by homologous recombination and sensitivity to poly(ADP-ribose) polymerase inhibition. Cancer Res. 66:8109–8115. 2006. View Article : Google Scholar : PubMed/NCBI | |
Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E, Kyle S, Meuth M, Curtin NJ and Helleday T: Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature. 434:913–917. 2005. View Article : Google Scholar : PubMed/NCBI | |
Gelmon KA, Tischkowitz M, Mackay H, Swenerton K, Robidoux A, Tonkin K, Hirte H, Huntsman D, Clemons M, Gilks B, et al: Olaparib in patients with recurrent high-grade serous or poorly differentiated ovarian carcinoma or triple-negative breast cancer: A phase 2, multicentre, open-label, non-randomised study. Lancet Oncol. 12:852–861. 2011. View Article : Google Scholar : PubMed/NCBI | |
Oza AM, Cibula D, Benzaquen AO, Poole C, Mathijssen RH, Sonke GS, Colombo N, Špaček J, Vuylsteke P, Hirte H, et al: Olaparib combined with chemotherapy for recurrent platinum-sensitive ovarian cancer: A randomised phase 2 trial. Lancet Oncol. 16:87–97. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lee JM, Hays JL, Annunziata CM, Noonan AM, Minasian L, Zujewski JA, Yu M, Gordon N, Ji J, Sissung TM, et al: Phase I/Ib study of olaparib and carboplatin in BRCA1 or BRCA2 mutation-associated breast or ovarian cancer with biomarker analyses. J Natl Cancer Inst. 106:dju0892014. View Article : Google Scholar : PubMed/NCBI | |
Fingar DC, Richardson CJ, Tee AR, Cheatham L, Tsou C and Blenis J: mTOR controls cell cycle progression through its cell growth effectors S6K1 and 4E-BP1/eukaryotic translation initiation factor 4E. Mol Cell Biol. 24:200–216. 2004. View Article : Google Scholar : PubMed/NCBI | |
Yuan TL and Cantley LC: PI3K pathway alterations in cancer: Variations on a theme. Oncogene. 27:5497–5510. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zoncu R, Efeyan A and Sabatini DM: mTOR: From growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol. 12:21–35. 2011. View Article : Google Scholar : PubMed/NCBI | |
Engelman JA: Targeting PI3K signalling in cancer: Opportunities, challenges and limitations. Nat Rev Cancer. 9:550–562. 2009. View Article : Google Scholar : PubMed/NCBI | |
Motzer RJ, Escudier B, Oudard S, Hutson TE, Porta C, Bracarda S, Grünwald V, Thompson JA, Figlin RA, Hollaender N, et al: Phase 3 trial of everolimus for metastatic renal cell carcinoma: Final results and analysis of prognostic factors. Cancer. 116:4256–4265. 2010. View Article : Google Scholar : PubMed/NCBI | |
Husseinzadeh N and Husseinzadeh HD: mTOR inhibitors and their clinical application in cervical, endometrial and ovarian cancers: A critical review. Gynecol Oncol. 133:375–381. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hirasawa T, Miyazawa M, Yasuda M, Shida M, Ikeda M, Kajiwara H, Matsui N, Fujita M, Muramatsu T and Mikami M: Alterations of hypoxia-induced factor signaling pathway due to mammalian target of rapamycin (mTOR) suppression in ovarian clear cell adenocarcinoma: In vivo and in vitro explorations for clinical trial. Int J Gynecol Cancer. 23:1210–1218. 2013. View Article : Google Scholar : PubMed/NCBI | |
Köbel M, Huntsman D and Gilks CB: Critical molecular abnormalities in high-grade serous carcinoma of the ovary. Expert Rev Mol Med. 10:e222008. View Article : Google Scholar : PubMed/NCBI | |
Zoratto F, Rossi L, Giordani E, Strudel M, Papa A and Tomao S: From conventional chemotherapy to targeted therapy: Use of monoclonal antibodies (moAbs) in gastrointestinal (GI) tumors. Tumour Biol. 35:8471–8482. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kashiyama T, Oda K, Ikeda Y, Shiose Y, Hirota Y, Inaba K, Makii C, Kurikawa R, Miyasaka A, Koso T, et al: Antitumor activity and induction of TP53-dependent apoptosis toward ovarian clear cell adenocarcinoma by the dual PI3K/mTOR inhibitor DS-7423. PLoS One. 9:e872202014. View Article : Google Scholar : PubMed/NCBI | |
Shoji K, Oda K, Kashiyama T, Ikeda Y, Nakagawa S, Sone K, Miyamoto Y, Hiraike H, Tanikawa M, Miyasaka A, et al: Genotype-dependent efficacy of a dual PI3K/mTOR inhibitor, NVP-BEZ235 and an mTOR inhibitor, RAD001, in endometrial carcinomas. PLoS One. 7:e374312012. View Article : Google Scholar : PubMed/NCBI | |
Gershenson DM, Sun CC, Bodurka D, Coleman RL, Lu KH, Sood AK, Deavers M, Malpica AL and Kavanagh JJ: Recurrent low-grade serous ovarian carcinoma is relatively chemoresistant. Gynecol Oncol. 114:48–52. 2009. View Article : Google Scholar : PubMed/NCBI | |
Gershenson DM, Sun CC, Lu KH, Coleman RL, Sood AK, Malpica A, Deavers MT, Silva EG and Bodurka DC: Clinical behavior of stage II–IV low-grade serous carcinoma of the ovary. Obstet Gynecol. 108:361–368. 2006. View Article : Google Scholar : PubMed/NCBI | |
Miller CR, Oliver KE and Farley JH: MEK1/2 inhibitors in the treatment of gynecologic malignancies. Gynecol Oncol. 133:128–137. 2014. View Article : Google Scholar : PubMed/NCBI | |
Farley J, Brady WE, Vathipadiekal V, Lankes HA, Coleman R, Morgan MA, Mannel R, Yamada SD, Mutch D, Rodgers WH, et al: Selumetinib in women with recurrent low-grade serous carcinoma of the ovary or peritoneum: An open-label, single-arm, phase 2 study. Lancet Oncol. 14:134–140. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kuo KT, Guan B, Feng Y, Mao TL, Chen X, Jinawath N, Wang Y, Kurman RJ, Shih Ie M and Wang TL: Analysis of DNA copy number alterations in ovarian serous tumors identifies new molecular genetic changes inlow-grade and high-grade carcinomas. Cancer Res. 69:4036–4042. 2009. View Article : Google Scholar : PubMed/NCBI | |
Hamilton MP, Rajapakshe K, Hartig SM, Reva B, McLellan MD, Kandoth C, Ding L, Zack TI, Gunaratne PH, Wheeler DA, et al: Identification of a pan-cancer oncogenic microRNA superfamily anchored by a central core seed motif. Nat Commun. 4:27302013. View Article : Google Scholar : PubMed/NCBI | |
Jacobsen A, Silber J, Harinath G, Huse JT, Schultz N and Sander C: Analysis of microRNA-target interactions across diverse cancer types. Nat Struct Mol Biol. 20:1325–1332. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zovoilis A, Mungall AJ, Moore R, Varhol R, Chu A, Wong T, Marra M and Jones SJ: The expression level of small non-coding RNAs derived from the first exon of protein-coding genes is predictive of cancer status. EMBO Rep. 15:402–410. 2014. View Article : Google Scholar : PubMed/NCBI | |
Mukherji S, Ebert MS, Zheng GX, Tsang JS, Sharp PA and van Oudenaarden A: MicroRNAs can generate thresholds in target gene expression. Nat Genet. 43:854–859. 2011. View Article : Google Scholar : PubMed/NCBI | |
Boren T, Xiong Y, Hakam A, Wenham R, Apte S, Wei Z, Kamath S, Chen DT, Dressman H and Lancaster JM: MicroRNAs and their target messenger RNAs associated with endometrial carcinogenesis. Gynecol Oncol. 110:206–215. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wu W, Lin Z, Zhuang Z and Liang X: Expression profile of mammalian microRNAs in endometrioid adenocarcinoma. Eur J Cancer Prev. 18:50–55. 2009. View Article : Google Scholar : PubMed/NCBI | |
Mauel S, Kruse B, Etschmann B, von der Schulenburg AG, Schaerig M, Stövesand K, Wilcken B and Sterner-Kock A: Latent transforming growth factor binding protein 4 (LTBP-4) is downregulated in human mammary adenocarcinomas in vitro and in vivo. APMIS. 115:687–700. 2007. View Article : Google Scholar : PubMed/NCBI | |
Burns MB, Temiz NA and Harris RS: Evidence for APOBEC3B mutagenesis in multiple human cancers. Nat Genet. 45:977–983. 2013. View Article : Google Scholar : PubMed/NCBI | |
Roberts SA, Lawrence MS, Klimczak LJ, Grimm SA, Fargo D, Stojanov P, Kiezun A, Kryukov GV, Carter SL, Saksena G, et al: An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers. Nat Genet. 45:970–976. 2013. View Article : Google Scholar : PubMed/NCBI | |
Genome Atlas Research Network Cancer. Weinstein JN, Collisson EA, Mills GB, Shaw KR, Ozenberger BA, Ellrott K, Shmulevich I, Sander C and Stuart JM: The cancer genome atlas pan-cancer analysis project. Nat Genet. 45:1113–1120. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ren X, McHale CM, Skibola CF, Smith AH, Smith MT and Zhang L: An emerging role for epigenetic dysregulation in arsenic toxicity and carcinogenesis. Environ Health Perspect. 119:11–19. 2011. View Article : Google Scholar : PubMed/NCBI |