1
|
Ezzat S, Asa SL, Couldwell WT, Barr CE,
Dodge WE, Vance ML and McCutcheon IE: The prevalence of pituitary
adenomas: A systematic review. Cancer. 101:613–619. 2004.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Colao A, Di Somma C, Pivonello R, Faggiano
A, Lombardi G and Savastano S: Medical therapy for clinically
non-functioning pituitary adenomas. Endocr Relat Cancer.
15:905–915. 2008. View Article : Google Scholar : PubMed/NCBI
|
3
|
Kasputytė R, Slatkevičienė G,
Liutkevičienė R, Glebauskienė B, Bernotas G and Tamašauskas A:
Changes of visual functions in patients with pituitary adenoma.
Medicina (Kaunas). 49:132–137. 2013.PubMed/NCBI
|
4
|
Knosp E, Steiner E, Kitz K and Matula C:
Pituitary adenomas with invasion of the cavernous sinus space: A
magnetic resonance imaging classification compared with surgical
findings. Neurosurgery. 33:610–618. 1993. View Article : Google Scholar : PubMed/NCBI
|
5
|
Ferrante E, Ferraroni M, Castrignanò T,
Menicatti L, Anagni M, Reimondo G, Del Monte P, Bernasconi D, Loli
P, Faustini-Fustini M, et al: Non-functioning pituitary adenoma
database: A useful resource to improve the clinical management of
pituitary tumours. Eur J Endocrinol. 155:823–829. 2006. View Article : Google Scholar : PubMed/NCBI
|
6
|
Ahmadi J, North CM, Segall HD, Zee CS and
Weiss MH: Cavernous sinus invasion by pituitary adenomas. Am J
Neuroradiol. 6:893–898. 1985.
|
7
|
Falbusch R and Buchfejder M:
Transsphenoidal surgery of parasellar pituitary adenomas. Acta
Neurochir. 92:93–99. 1988. View Article : Google Scholar : PubMed/NCBI
|
8
|
Scheithauer BW, Kovacs KT, Laws ER Jr and
Randall RV: Pathology of invasive pituitary tumors with special
reference to functional classification. J Neurosurg. 65:733–744.
1986. View Article : Google Scholar : PubMed/NCBI
|
9
|
Moon CH, Hwang SC, Kim BT, Ohn YH and Park
TK: Visual prognostic value of optical coherence tomography and
photopic negative response in chiasmal compression. Invest
Ophthalmol Vis Sci. 52:8527–8533. 2011. View Article : Google Scholar : PubMed/NCBI
|
10
|
Thomas R, Shenoy K, Seshadri MS, Muliyil
J, Rao A and Paul P: Visual field defects in non-functioning
pituitary adenomas. Indian J Ophthalmol. 50:127–130.
2002.PubMed/NCBI
|
11
|
Trautmann JC and Laws ER Jr: Visual status
after transphenoidal surgery at the Mayo Clinic 1971–1982. Am J
Ophthalmol. 96:200–208. 1983. View Article : Google Scholar : PubMed/NCBI
|
12
|
Kaur A, Banerji D, Kumar D and Sharma K:
Visual status in suprasellar pituitary tumours. Indian J
Ophthalmol. 43:131–134. 1995.PubMed/NCBI
|
13
|
Mortini P, Losa M, Barzaghi R, Boari N and
Giovanelli M: Results of transsphenoidal surgery in a large series
of patients with pituitary adenoma. Neurosurgery. 56:1222–1233.
2005. View Article : Google Scholar : PubMed/NCBI
|
14
|
el-Azouzi M, Black PM, Candia G, Zervas NT
and Panagopoulos KP: Transsphenoidal surgery for visual loss in
patients with pituitary adenomas. Neurol Res. 12:23–25. 1990.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Marazuela M, Astigarraga B, Vicente A,
Estrada J, Cuerda C, Garcia-Uria J and Lucas T: Recovery of visual
and endocrine function following transsphenoidal surgery of large
nonfunctioning pituitary adenomas. J Endocrinol Invest. 17:703–707.
1994. View Article : Google Scholar : PubMed/NCBI
|
16
|
Gondim JA, de Almeida JP, de Albuquerque
LA, Schops M, Gomes E and Ferraz T: Headache associated with
pituitary tumors. J Headache Pain. 10:15–20. 2009. View Article : Google Scholar : PubMed/NCBI
|
17
|
Levy MJ, Jäger H, Powell M, Matharu MS,
Meeran K and Goadsby PJ: Pituitary volume and headache: Size is not
everything. Arch Neurol. 61:721–725. 2004. View Article : Google Scholar : PubMed/NCBI
|
18
|
Stevens JM, Valentine AR and Kendall BE:
Computed cranial and spinal imagingA practical introduction.
Lippincott Williams & Wilkins; Philadelphia, PA: pp. 154–156.
1988
|
19
|
Wilson CB: Neurosurgical management of
large and invasive pituitary tumorsClinical management of pituitary
disorders. Tindall GT and Collins WF: Raven; New York, NY: pp.
335–342. 1979
|
20
|
Luo JC, Peng YL, Chen TS, Huo TI, Hou MC,
Huang HC, Lin HC and Lee FY: Clopidogrel inhibits angiogenesis of
gastric ulcer healing via down regulation of vascular endothelial
growth factor receptor 2. J Formos Med Assoc. 115:764–772. 2016.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Lu J, Zhang L, Chen X, Lu Q, Yang Y, Liu J
and Ma X: SIRT1 counteracted the activation of STAT3 and NF-κB to
repress the gastric cancer growth. Int J Clin Exp Med. 7:5050–5058.
2014.PubMed/NCBI
|
22
|
Nie Y, Erion DM, Yuan Z, Dietrich M,
Shulman GI, Horvath TL and Gao Q: STAT3 inhibition of
gluconeogenesis is downregulated by SirT1. Nat Cell Biol.
11:492–500. 2009. View Article : Google Scholar : PubMed/NCBI
|
23
|
Bernier M, Paul RK, Martin-Montalvo A,
Scheibye-Knudsen M, Song S, He HJ, Armour SM, Hubbard BP, Bohr VA,
Wang L, et al: Negative regulation of STAT3 protein-mediated
cellular respiration by SIRT1 protein. J Biol Chem.
286:19270–19279. 2011. View Article : Google Scholar : PubMed/NCBI
|
24
|
Imai S, Armstrong CM, Kaeberlein M and
Guarente L: Transcriptional silencing and longevity protein Sir2 is
an NAD-dependent histone deacetylase. Nature. 403:795–800. 2000.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Cohen HY, Miller C, Bitterman KJ, Wall NR,
Hekking B, Kessler B, Howitz KT, Gorospe M, de Cabo R and Sinclair
DA: Calorie restriction promotes mammalian cell survival by
inducing the SIRT1 deacetylase. Science. 305:390–392. 2004.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Vaziri H, Dessain SK, Eaton Ng E, Imai SI,
Frye RA, Pandita TK, Guarente L and Weinberg RA: hSIR2(SIRT1)
functions as an NAD-dependent p53 deacetylase. Cell. 107:149–159.
2001. View Article : Google Scholar : PubMed/NCBI
|
27
|
Chen WY, Wang DH, Yen RC, Luo J, Gu W and
Baylin SB: Tumor suppressor HIC1 directly regulates SIRT1 to
modulate p53-dependent DNA-damage responses. Cell. 123:437–448.
2005. View Article : Google Scholar : PubMed/NCBI
|
28
|
Motta MC, Divecha N, Lemieux M, Kamel C,
Chen D, Gu W, Bultsma Y, McBurney M and Guarente L: Mammalian SIRT1
represses forkhead transcription factors. Cell. 116:551–563. 2004.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Chen HC, Jeng YM, Yuan RH, Hsu HC and Chen
YL: SIRT1 promotes tumorigenesis and resistance to chemotherapy in
hepatocellular carcinoma and its expression predicts poor
prognosis. Ann Surg Oncol. 19:2011–2019. 2012. View Article : Google Scholar : PubMed/NCBI
|
30
|
Sung JY, Kim R, Kim JE and Lee J: Balance
between SIRT1 and DBC1 expression is lost in breast cancer. Cancer
Sci. 101:1738–1744. 2010. View Article : Google Scholar : PubMed/NCBI
|
31
|
Huffman DM, Grizzle WE, Bamman MM, Kim JS,
Eltoum IA, Elgavish A and Nagy TR: SIRT1 is significantly elevated
in mouse and human prostate cancer. Cancer Res. 67:6612–6618. 2007.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Jang KY, Kim KS, Hwang SH, Kwon KS, Kim
KR, Park HS, Park BH, Chung MJ, Kang MJ, Lee DG and Moon WS:
Expression and prognostic significance of SIRT1 in ovarian
epithelial tumours. Pathology. 41:366–371. 2009. View Article : Google Scholar : PubMed/NCBI
|
33
|
Cha EJ, Noh SJ, Kwon KS, Kim CY, Park BH,
Park HS, Lee H, Chung MJ, Kang MJ, Lee DG, et al: Expression of
DBC1 and SIRT1 is associated with poor prognosis of gastric
carcinoma. Clin Cancer Res. 15:4453–4459. 2009. View Article : Google Scholar : PubMed/NCBI
|
34
|
Stunkel W, Peh BK, Tan YC, Nayagam VM,
Wang X, Salto-Tellez M, Ni B, Entzeroth M and Wood J: Function of
the SIRT1 protein deacetylase in cancer. Biotechnol J. 2:1360–1368.
2007. View Article : Google Scholar : PubMed/NCBI
|
35
|
Liu G, Yuan X, Zeng Z, Tunici P, Ng H,
Abdulkadir IR, Lu L, Irvin D, Black KL and Yu JS: Analysis of gene
expression and chemoresistance of CD133+ cancer stem cells in
glioblastoma. Mol Cancer. 5:672006. View Article : Google Scholar : PubMed/NCBI
|
36
|
Jang KY, Hwang SH, Kwon KS, Kim KR, Choi
HN, Lee NR, Kwak JY, Park BH, Park HS, Chung MJ, et al: SIRT1
expression is associated with poor prognosis of diffuse large
B-cell lymphoma. Am J Surg Pathol. 32:1523–1531. 2008. View Article : Google Scholar : PubMed/NCBI
|
37
|
Rizk SM, Shahin NN and Shaker OG:
Association between SIRT1 gene polymorphisms and breast cancer in
Egyptians. PLoS One. 11:e01519012016. View Article : Google Scholar : PubMed/NCBI
|
38
|
Wesche J, Haglund K and Haugsten EM:
Fibroblast growth factors and their receptors in cancer. Biochem J.
437:199–213. 2011. View Article : Google Scholar : PubMed/NCBI
|
39
|
Marzioni D, Lorenzi T, Mazzucchelli R,
Capparuccia L, Morroni M, Fiorini R, Bracalenti C, Catalano A,
David G, Castellucci M, et al: Expression of basic fibroblast
growth factor, its receptors and syndecans in bladder cancer. Int J
Immunopathol Pharmacol. 22:627–638. 2009. View Article : Google Scholar : PubMed/NCBI
|
40
|
Davies H, Hunter C, Smith R, Stephens P,
Greenman C, Bignell G, Teague J, Butler A, Edkins S, Stevens C, et
al: Somatic mutations of the protein kinase gene family in human
lung cancer. Cancer Res. 65:7591–7595. 2005.PubMed/NCBI
|
41
|
Bayraktar S, Thompson PA, Yoo SY, Do KA,
Sahin AA, Arun BK, Bondy ML and Brewster AM: The relationship
between eight GWAS-identified single-nucleotide polymorphisms and
primary breast cancer outcomes. Oncologist. 18:493–500. 2013.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Butt S, Harlid S, Borgquist S, Ivarsson M,
Landberg G, Dillner J, Carlson J and Manjer J: Genetic
predisposition, parity, age at first childbirth and risk for breast
cancer. BMC Res Notes. 5:4142012. View Article : Google Scholar : PubMed/NCBI
|
43
|
Chen Y, Shi C and Guo Q: TNRC9 rs12443621
and FGFR2 rs2981582 polymorphisms and breast cancer risk. World J
Surg Oncol. 14:502016. View Article : Google Scholar : PubMed/NCBI
|
44
|
Cui F, Wu D, Wang W, He X and Wang M:
Variants of FGFR2 and their associations with breast cancer risk: a
HUGE systematic review and meta-analysis. Breast Cancer Res Treat.
155:313–335. 2016. View Article : Google Scholar : PubMed/NCBI
|
45
|
Campa D, Barrdahl M, Gaudet MM, Black A,
Chanock SJ, Diver WR, Gapstur SM, Haiman C, Hankinson S, Hazra A,
et al: Genetic risk variants associated with in situ breast cancer.
Breast Cancer Res. 17:822015. View Article : Google Scholar : PubMed/NCBI
|
46
|
Siddiqui S, Chattopadhyay S, Akhtar MS,
Najm MZ, Deo SV, Shukla NK and Husain SA: A study on genetic
variants of fibroblast growth factor receptor 2 (FGFR2) and the
risk of breast cancer from North India. PLoS One. 9:e1104262014.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Ledwoń JK, Hennig EE, Maryan N, Goryca K,
Nowakowska D, Niwińska A and Ostrowski J: Common low-penetrance
risk variants associated with breast cancer in Polish women. BMC
Cancer. 13:5102013. View Article : Google Scholar : PubMed/NCBI
|
48
|
Murillo-Zamora E, Moreno-Macías H, Ziv E,
Romieu I, Lazcano-Ponce E, Ángeles-Llerenas A, Pérez-Rodríguez E,
Vidal-Millán S, Fejerman L and Torres-Mejía G: Association between
rs2981582 polymorphism in the FGFR2 gene and the risk of breast
cancer in Mexican women. Arch Med Res. 44:459–466. 2013. View Article : Google Scholar : PubMed/NCBI
|
49
|
Ottini L, Silvestri V, Saieva C, Rizzolo
P, Zanna I, Falchetti M, Masala G, Navazio AS, Graziano V, Bianchi
S, et al: Association of low-penetrance alleles with male breast
cancer risk and clinicopathological characteristics: Results from a
multicenter study in Italy. Breast Cancer Res. 138:861–868. 2013.
View Article : Google Scholar
|
50
|
Jara L, Gonzalez-Hormazabal P, Cerceño K,
Di Capua GA, Reyes JM, Blanco R, Bravo T, Peralta O, Gomez F, Waugh
E, et al: Genetic variants in FGFR2 and MAP3K1 are associated with
the risk of familial and early-onset breast cancer in a
South-American population. Breast Cancer Res Treat. 137:559–569.
2013. View Article : Google Scholar : PubMed/NCBI
|
51
|
Miles FL, Rao JY, Eckhert C, Chang SC,
Pantuck A and Zhang ZF: Associations of immunity-related single
nucleotide polymorphisms with overall survival among prostate
cancer patients. Int J Clin Exp Med. 8:11470–11476. 2015.PubMed/NCBI
|
52
|
Yu H, Kortylewski M and Pardoll D:
Crosstalk between cancer and immune cells: Role of STAT3 in the
tumour microenvironment. Nat Rev Immunol. 7:41–51. 2007. View Article : Google Scholar : PubMed/NCBI
|
53
|
Yu H, Pardoll D and Jove R: STATs in
cancer inflammation and immunity: a leading role for STAT3. Nat Rev
Cancer. 9:798–809. 2009. View Article : Google Scholar : PubMed/NCBI
|
54
|
Niu G, Wright KL, Huang M, Song L, Haura
E, Turkson J, Zhang S, Wang T, Sinibaldi D, Coppola D, et al:
Constitutive Stat3 activity up-regulates VEGF expression and tumor
angiogenesis. Oncogene. 21:2000–2008. 2002. View Article : Google Scholar : PubMed/NCBI
|
55
|
Kusaba T, Nakayama T, Yamazumi K, Yakata
Y, Yoshizaki A, Nagayasu T and Sekine I: Expression of p-STAT3 in
human colorectal adenocarcinoma and adenoma; correlation with
clinicopathological factors. J Clin Pathol. 58:833–838. 2005.
View Article : Google Scholar : PubMed/NCBI
|
56
|
He G and Karin M: NF-κB and STAT3-key
players in liver inflammation and cancer. Cell Res. 21:159–168.
2011. View Article : Google Scholar : PubMed/NCBI
|
57
|
Pandey MK, Sung B and Aggarwal BB:
Betulinic acid suppresses STAT3 activation pathway through
induction of protein tyrosine phosphatase SHP-1 in human multiple
myeloma cells. Int J Cancer. 127:282–1392. 2010.PubMed/NCBI
|
58
|
Gariboldi MB, Ravizza R and Monti E: The
IGFR1 inhibitor NVP-AEW541 disrupts a pro-survival and
pro-angiogenic IGF-STAT3-HIF1 pathway in human glioblastoma cells.
Biochem Pharmacol. 80:455–462. 2010. View Article : Google Scholar : PubMed/NCBI
|
59
|
Shin J, Lee HJ, Jung DB, Jung JH, Lee HJ,
Lee EO, Lee SG, Shim BS, Choi SH, Ko SG, et al: Suppression of
STAT3 and HIF-1 alpha mediates anti-angiogenic activity of
betulinic acid in hypoxic PC-3 prostate cancer cells. PLoS One.
6:e214922011. View Article : Google Scholar : PubMed/NCBI
|
60
|
Leeman-Neill RJ, Wheeler SE, Singh SV,
Thomas SM, Seethala RR, Neill DB, Panahandeh MC, Hahm ER, Joyce SC,
Sen M, et al: Guggulsterone enhances head and neck cancer therapies
via inhibition of signal transducer and activator of
transcription-3. Carcinogenesis. 30:1848–1856. 2009. View Article : Google Scholar : PubMed/NCBI
|
61
|
Rocha GA, Rocha AM, Gomes AD, Faria CL Jr,
Melo FF, Batista SA, Fernandes VC, Almeida NB, Teixeira KN, Brito
KS and Queiroz DM: STAT3 polymorphism and helicobacter pylori CagA
strains with higher number of EPIYA-C segments independently
increase the risk of gastric cancer. BMC Cancer. 15:5282015.
View Article : Google Scholar : PubMed/NCBI
|
62
|
Yuan K, Liu H, Huang L, Ren X, Liu J, Dong
X, Tian W and Jia Y: rs744166 polymorphism of the STAT3 gene is
associated with risk of gastric cancer in a Chinese population.
Biomed Res Int. 2014:5279182014. View Article : Google Scholar : PubMed/NCBI
|
63
|
Ryan BM, Wolff RK, Valeri N, Khan M,
Robinson D, Paone A, Bowman ED, Lundgreen A, Caan B, Potter J, et
al: An analysis of genetic factors related to risk of inflammatory
bowel disease and colon cancer. Cancer Epidemiol. 38:583–590. 2014.
View Article : Google Scholar : PubMed/NCBI
|
64
|
Jiang B, Zhu ZZ, Liu F, Yang LJ, Zhang WY,
Yuan HH, Wang JG, Hu XH and Huang G: STAT3 gene polymorphisms and
susceptibility to non-small cell lung cancer. Genet Mol Res.
10:1856–1865. 2011. View Article : Google Scholar : PubMed/NCBI
|
65
|
Akaike H: Information theory as an
extension of the maximum likelihood principlePetrov BN and Csaki F:
2nd International Symposium on Information Theory. Akademiai Kiado;
Budapest: pp. 267–281. 1973
|
66
|
Shan J, Mahfoudh W, Dsouza SP, Hassen E,
Bouaouina N, Abdelhak S, Benhadjayed A, Memmi H, Mathew RA, Aigha
II, et al: Genome-wide association studies (GWAS) breast cancer
susceptibility loci in Arabs: Susceptibility and prognostic
implications in Tunisians. Breast Cancer Res Treat. 135:715–724.
2012. View Article : Google Scholar : PubMed/NCBI
|