Open Access

Identification of potential target genes associated with the effect of propranolol on angiosarcoma via microarray analysis

  • Authors:
    • Shiyong Zhou
    • Pengfei Liu
    • Wenhua Jiang
    • Huilai Zhang
  • View Affiliations

  • Published online on: March 31, 2017     https://doi.org/10.3892/ol.2017.5968
  • Pages: 4267-4275
  • Copyright: © Zhou et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

The purpose of the present study was to explore the effect of propranolol on angiosarcoma, and the potential target genes involved in the processes of proliferation and differentiation of angiosarcoma tumor cells. The mRNA expression profile (GSE42534) was downloaded from the Gene Expressed Omnibus database, including three samples without propranolol treatment (control), three samples with propranolol treatment for 4 h and three samples with propranolol treatment for 24 h. The differentially expressed genes (DEGs) in angiosarcoma tumor cells with or without propranolol treatment were obtained via the limma package of R and designated DEGs‑4 h and DEGs‑24 h. The DEGs‑24 h group was divided into two sets. Set 1 contained the DEGs also contained in the DEGs‑4 h group. Set 2 contained the remainder of the DEGs. Functional and pathway enrichment analysis of sets 1 and 2 was performed. The protein‑protein interaction (PPI) networks of sets 1 and 2 were constructed, termed PPI 1 and PPI 2, and visualized using Cytoscape software. Modules of the two PPI networks were analyzed, and their topological structures were simulated using the tYNA platform. A total of 543 and 2,025 DEGs were identified in angiosarcoma tumor cells treated with propranolol for 4 and 24 h, respectively, compared with the control group. A total of 401 DEGs were involved in DEGs‑4 h and DEGs‑24 h, including metallothionein 1, heme oxygenase 1, WW domain‑binding protein 2 and sequestosome 1. Certain significantly enriched gene ontology (GO) terms and pathways of sets 1 and 2 were identified, containing 28 overlapping GO terms. Furthermore, 121 nodes and 700 associated pairs were involved in PPI 1, whereas 1,324 nodes and 11,839 associated pairs were involved in PPI 2. A total of 45 and 593 potential target genes were obtained according to the node degrees of PPI 1 and PPI 2. The results of the present study indicated that a number of potential target genes, including AXL receptor tyrosine kinase, coatomer subunit α, DR1‑associated protein 1 and ERBB receptor feedback inhibitor 1 may be involved in the effect of propranolol on angiosarcoma.

Introduction

Angiosarcoma is a rare malignant vascular tumor and is difficult to diagnose and treat (1). It may be characterized by rapidly proliferating and extensively infiltrating anaplastic cells, which are derived from blood vessels, and lining irregular blood-filled spaces (2,3). Angiosarcoma is derived from mesenchymal cells and usually originates from the liver, breast, spleen, bone or heart (2,46). Angiosarcoma accounts for between 1 and 2% of all sarcomas, and its overall 5-year survival rate is <20%, owing to the high recurrence and distant metastasis rates (2). In addition, metastasis usually occurs in the liver, lung, bone and lymph nodes (7). Treatment of angiosarcoma is multifaceted and primarily consists of radiotherapy, surgery and chemotherapy (8).

Propranolol is a non-selective β-blocker and may inhibit the growth of angiosarcoma by affecting the proliferation and differentiation of angiosarcoma tumor cells, thus being considered a promising treatment to delay surgery (911). However, its underlying molecular mechanisms and pharmacodynamics of the effects on angiosarcoma remain obscure, and the potential target genes involved in the proliferation and differentiation processes of angiosarcoma tumor cells also require investigation.

Gene microarray is widely used as an effective technology to detect the gene expression in cells and tissues at different disease stages of cancer. Thus, it may aid in the identification of novel signaling pathways or molecular mechanisms associated with tumorigenesis.

In the present study, the differentially expressed genes (DEGs) in angiosarcoma tumor cells treated with propranolol compared with the control group were identified via a bioinformatics-based method. Furthermore, enenrichment analysis, protein-protein interaction (PPI) network construction and module analysis were performed. These analyses aided in the identification of essential genes associated with angiosarcoma, such as AXL receptor tyrosine kinase (AXL), coatomer subunit α, DR1-associated protein 1, ERBB receptor feedback inhibitor 1, family with sequence similarity 195 member A, expressed sequence AA467197, apoptosis-associated tyrosine kinase, ATP-binding cassette subfamily A member 7, acyl-CoA dehydrogenase family member 9 and acyl-CoA-binding domain containing 6. Thus, this may contribute to understanding the molecular mechanism underlying angiosarcoma in order to identify potential gene targets for the diagnosis and treatment of patients with angiosarcoma.

Materials and methods

mRNA expression microarray data

The standardized mRNA expression profile GSE42534 (9) was downloaded from the Gene Expression Omnibus (www.ncbi.nlm.nih.gov/geo/) database, including 3 samples without propranolol treatment (the control group), 3 samples with propranolol treatment for 4 h and 3 samples with propranolol treatment for 24 h.

Identification and grouping of differentially expressed genes

The DEGs in angiosarcoma tumor cells of the propranolol treatment groups compared with the control group were obtained using the limma package of R (http://bioconductor.org/packages/release/bioc/html/limma.html) (12). They were designated DEGs-4 h and DEGs-24 h. The DEGs-24 h were divided into 2 sets. Set 1 contained those DEGs also contained in the DEGs-4 h group. Set 2 contained the remainder of the DEGs. For the sake of accuracy, all DEGs were identified according to the following criteria: P<0.001;|log2 (fold-change) |≥1.

Gene ontology (GO) and pathway enrichment analysis

In order to explore the potential biological processes that were altered, GO and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed using the Database for Annotation, Visualization and Integrated Discovery (DAVID; david.abcc.ncifcrf.gov/) (13). The GO terms and the KEGG pathways were identified with the criterion P<0.05.

Construction of protein-protein interaction (PPI) networks

The two PPI networks for sets 1 and 2 were constructed using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) (14) database, termed PPI 1 and PPI 2, respectively, and visualized using Cytoscape software (version 3.4.0; http://www.cytoscape.org/) (15). STRING, which manipulates the interactions between genes or proteins from multiple sources, was used to identify the interactions of DEGs. A combined score (a representation of reliability of interactions) >0.4 was used as the threshold for the selection of interaction pairs. Modules of the two PPI networks were analyzed using the Multi Contrast Delayed Enhancement plug-in of Cytoscape (16). When the combined score was >1.5, function enrichment analysis of all enrolled DEGs was performed using DAVID, and the GO terms and the KEGG pathways with P<0.05 were identified. Topological structures of the two PPI networks were analyzed using tYNA (tyna.gersteinlab.org/tyna) (17), and potential target genes, whereby the degree of node attributes was ≥10, were identified. Degree represents the number of direct interactions a node has with with other nodes.

Results

Identification of DEGs

A total of 543 DEGs (242 up- and 301 downregulated) and 2,025 DEGs (1,107 up- and 918 downregulated) were identified in angiosarcoma tumor cells treated with propranolol (DEGs-4 h and DEGs-24 h, respectively) compared with the control group. A total of 401 DEGs (set 1) were involved in DEGs-4 h and DEGs-24 h, including metallothionein 1, heme oxygenase 1, WW domain-binding protein 2 and sequestosome 1. Among set 1, 179 DEGs in the DEGs-4 h group were upregulated, of which 170 DEGs were upregulated and 9 DEGs (2410011G03Rik, 2810417H13Rik, ATPase inhibitory factor 1, G2 and S-phase expressed 1, LSM5 homolog U6 small nuclear RNA and mRNA degradation associated, non-SMS condensing I complex subunit H, Rp127, ubiquitin-40A ribosomal protein S27a precursor and zinc finger CCHC-type-containing 8) were downregulated in the DEGs-24 h group. Similarly, 222 DEGs of the DEGs-4 h group were downregulated, of which 196 DEGs were downregulated and 26 DEGs [D730049H07Rik, desert hedgehog, dual-specificity phosphatase 7, endothelin 1, ETS proto-oncogene 1, general receptor for phosphoinositides, mitogen-associated protein kinase 6, midnolin, myeloid-associated differentiation marker, lysophosphatidic acid receptor 6, platelet-derived growth factor subunit A, PDZ and LIM domain (Pdlim) 1, Pdlim7, plexin A2, phosphatidic acid phosphatase type 2B, Ppmlf, regulator of G-protein signaling 16, ras homolog family member B, roundabout guidance receptor 4, sterile α motif domain-containing 4, solute carrier family 2 member 1, solute carrier family 9 isoform A3 regulatory factor 2, tissue inhibitor of metalloproteinase 3, tumor necrosis factor-α-induced protein 2, trophoblast glycoprotein and WNT1-inducible signaling pathway protein 1] were upregulated in the DEGs-24 h group.

Functional and pathway enrichment analysis of sets 1 and 2

The top 20 most significantly enriched GO terms of sets 1 and 2 are presented in Table IA and B, respectively. Among them, 28 terms were coincident (Table IC). The enriched KEGG pathways of sets 1 and 2 are presented in Table IIA and B, respectively.

Table I.

Significantly enriched and coincident GO terms in sets 1 and 2.

Table I.

Significantly enriched and coincident GO terms in sets 1 and 2.

A, Top 20 most significantly enriched GO terms in set 1

GO IDGO nameGene numberP-value
GO:0005730Nucleolus230.000000006
GO:0016126Sterol biosynthetic process  80.000000580
GO:0031974Membrane-enclosed lumen430.000000604
GO:0001525Angiogenesis120.000017900
GO:0070013Intracellular organelle lumen380.000025500
GO:0043233Organelle lumen380.000027000
GO:0006694Steroid biosynthetic process  90.000027800
GO:0006695Cholesterol biosynthetic process  60.000037100
GO:0048514Blood vessel morphogenesis140.000037200
GO:0016125Sterol metabolic process  90.000050400
GO:0001568Blood vessel development150.000081700
GO:0031981Nuclear lumen310.000082000
GO:0001944Vasculature development150.000106000
GO:0005773Vacuole130.000118000
GO:0008610Lipid biosynthetic process160.000120000
GO:0005764Lysosome120.000148000
GO:0000323Lytic vacuole120.000156000
GO:0043232Intracellular non-membrane-bounded organelle510.000304000
GO:0043228 Non-membrane-bounded organelle510.000304000
GO:0042127Regulation of cell proliferation220.000387000

B, Top 20 most significantly enriched GO terms in set 2

GO IDGO nameGene numberP-value

GO:0030529Ribonucleoprotein complex1000.000000000000
GO:0005739Mitochondrion1780.000000000000
GO:0005840Ribosome  520.000000000000
GO:0044429Mitochondrial part  840.000000000001
GO:0003735Structural constituent of ribosome  390.000000000002
GO:0043233Organelle lumen1420.000000000003
GO:0031974Membrane-enclosed lumen1450.000000000005
GO:0070013Intracellular organelle lumen1410.000000000006
GO:0043228 Non-membrane-bounded organelle2080.000000000014
GO:0043232Intracellular non-membrane-bounded organelle2080.000000000014
GO:0006412Translation  580.000000000047
GO:0031090Organelle membrane1080.000000000050
GO:0005681Spliceosome  330.000000000056
GO:0006396RNA processing  700.000000000140
GO:0008380RNA splicing  420.000000000438
GO:0031967Organelle envelope  790.000000000456
GO:0031975Envelope  790.000000000543
GO:0019866Organelle inner membrane  540.000000001140
GO:0006397mRNA processing  480.000000002120
GO:0016071mRNA metabolic process  510.000000010600

C, Coincident enriched GO terms in sets 1 and 2

GO IDGO nameGO IDGO name

GO:0000166Nucleotide bindingGO:0031981Nuclear lumen
GO:0005730NucleolusGO:0032553Ribonucleotide binding
GO:0005773VacuoleGO:0032555Purine ribonucleotide binding
GO:0005783Endoplasmic reticulumGO:0034404Nucleobase, nucleoside and nucleotide biosynthetic process
GO:0005829CytosolGO:0034654Nucleobase, nucleoside, nucleotide and nucleic acid biosynthetic process
GO:0006334Nucleosome assemblyGO:0034728Nucleosome organization
GO:0006364rRNA processingGO:0042254Ribosome biogenesis
GO:0006396RNA processingGO:0043228 Non-membrane-bounded organelle
GO:0009165Nucleotide biosynthetic processGO:0043232Intracellular non-membrane-bounded organelle
GO:0016072rRNA metabolic processGO:0043233Organelle lumen
GO:0017076Purine nucleotide bindingGO:0044271Nitrogen compound biosynthetic process
GO:0022613Ribonucleoprotein complex biogenesisGO:0046907Intracellular transport
GO:0030529Ribonucleoprotein complexGO:0051726Regulation of cell cycle
GO:0031974Membrane-enclosed lumenGO:0070013Intracellular organelle lumen

[i] GO, gene ontology; set 1, coincident differentially expressed genes in angiosarcoma tumor cells treated with propranolol for 4 h and treated with propranolol for 4 h compared with treated without propranolol; set 2, differentially expressed genes in angiosarcoma tumor cells treated with propranolol for 24 h compared with treated without propranolol, but not in angiosarcoma tumor cells treated with propranolol for 4 h compared with treated without propranolol.

Table II.

Enriched KEGG pathways in sets 1 and 2.

Table II.

Enriched KEGG pathways in sets 1 and 2.

A, Enriched KEGG pathways in set 1

TermCountP-value
mmu04115: p53 signaling pathway  90.000105
mmu00100: Steroid biosynthesis  50.000398
mmu00900: Terpenoid backbone biosynthesis  40.003012
mmu04142: Lysosome  90.004013
mmu00600: Sphingolipid metabolism  50.012340
mmu00240: Pyrimidine metabolism  70.017197
mmu00270: Cysteine and methionine metabolism  40.033547
mmu00650: Butanoate metabolism  40.044913
mmu05214: Glioma  50.048883

B, Enriched KEGG pathways in set 2

TermCountP-value

mmu03040: Spliceosome370.000000
mmu00190: Oxidative phosphorylation310.000001
mmu03010: Ribosome220.000026
mmu04142: Lysosome240.000291
mmu05211: Renal cell carcinoma170.000350
mmu00480: Glutathione metabolism130.001727
mmu05016: Huntington's disease280.006229
mmu05012: Parkinson's disease220.007000
mmu05222: Small cell lung cancer160.007770
mmu03030: DNA replication  90.010537
mmu04666: Fc gamma R-mediated phagocytosis170.012796
mmu04114: Oocyte meiosis190.013122
mmu03018: RNA degradation120.016095
mmu04110: Cell cycle200.018766
mmu05200: Pathways in cancer410.020303
mmu04662: B cell receptor signaling pathway140.024365
mmu05212: Pancreatic cancer130.024948
mmu00600: Sphingolipid metabolism  90.030444
mmu00980: Metabolism of xenobiotics by cytochrome P450120.031062
mmu00330: Arginine and proline metabolism100.043757
mmu00860: Porphyrin and chlorophyll metabolism  70.046693
mmu00511: Other glycan degradation  50.048603
mmu04062: Chemokine signaling pathway240.056122
mmu05010: Alzheimer's disease240.056122
mmu05215: Prostate cancer140.056323
mmu04620: Toll-like receptor signaling pathway150.056726
mmu03410: Base excision repair  80.061961
mmu00230: Purine metabolism210.066837
mmu00982: Drug metabolism120.068874
mmu04920: Adipocytokine signaling pathway110.073182
mmu04810: Regulation of actin cytoskeleton270.075019

[i] KEGG, Kyoto Encyclopedia of Genes and Genomes; set 1, coincident differentially expressed genes in angiosarcoma tumor cells treated with propranolol for 4 h and treated with propranolol for 4 h compared with treated without propranolol; set 2, differentially expressed genes in angiosarcoma tumor cells treated with propranolol for 24 h compared with treated without propranolol, but not in angiosarcoma tumor cells treated with propranolol for 4 h compared with treated without propranolol; DEGs, differentially expressed genes.

Construction of the PPI networks for sets 1 and 2 and analysis of modules

The PPI networks of PPI 1 and PPI 2 are presented in Figs. 1 and 2. A total of 121 nodes and 700 associated pairs were involved in PPI 1, whereas 1,324 nodes and 11,839 associated pairs were involved in PPI 2. Fig. 3 and Table IIIA present the module information of PPI 1. Fig. 4 and Table IIIB present the module information of PPI 2.

Table III.

Module information of the protein-protein interaction networks for sets 1 and 2.

Table III.

Module information of the protein-protein interaction networks for sets 1 and 2.

A, Module information of the protein-protein interaction network of set 1

Module IDScoreGene numberEdge number
  110.425260
  2   1.5  4     6
  3   1.5  7  10

B, Module information of the protein-protein interaction network of set 2

Module IDScoreGene numberEdge number

  117.1701195
  2   9.441   387
  3   6.816   109
  4   6.470   446
  5   5.256   292
  6   3.674   267
  7   2.939   113
  8   2.9  7     20
  9   2.540     99
10   1.724     41

[i] Set 1, coincident differentially expressed genes in angiosarcoma tumor cells treated with propranolol for 4 h and treated with propranolol for 4 h compared with treated without propranolol; set 2, differentially expressed genes in angiosarcoma tumor cells treated with propranolol for 24 h compared with treated without propranolol, but not in angiosarcoma tumor cells treated with propranolol for 4 h compared with treated without propranolol.

Extent of enriched function and topological structure analysis of the PPI networks

There were 20 GO terms (including nucleolus, intracellular organelle lumen, membrane-enclosed lumen, ribosome biogenesis and RNA processing) and no KEGG pathways enriched in module 1 of PPI 1. The numbers of the enriched module functions of PPI 2 are presented in Table IV. The results identified that no enriched KEGG pathways appeared in modules 1 and 9 of PPI 2. A total of 45 and 593 potential target genes were obtained according to the node degrees of PPI 1 and PPI 2, and the top 10 nodes (potential target genes) which were associated with the other nodes in the PPI networks for sets 1 and 2 are presented in Table VA and VB, respectively.

Table IV.

Enriched function numbers of modules of the protein-protein interaction network of set 2.

Table IV.

Enriched function numbers of modules of the protein-protein interaction network of set 2.

ModulesEnriched GO term numbersEnriched KEGG pathway number
Module 1     0  0
Module 2  47  1
Module 3  10  1
Module 4122  6
Module 5  62  5
Module 6  9011
Module 710515
Module 8  12  1
Module 9154  0
Module 10  22  6

[i] Set 2, differentially expressed genes in angiosarcoma tumor cells treated with propranolol for 24 h compared with treated without propranolol, but not in angiosarcoma tumor cells treated with propranolol for 4 h compared with treated without propranolol; GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.

Table V.

Top 10 nodes most significantly associated with other nodes in the protein-protein interaction network of sets 1 and 2.

Table V.

Top 10 nodes most significantly associated with other nodes in the protein-protein interaction network of sets 1 and 2.

A, Top 10 nodes most significantly associated with other nodes in the protein-protein interaction network of set 1

Gene symbolDegreeClustering coefficientEccentricityBetweenness centrality
AXL45060
COPA44070
DRAP144020
ERRFI141020
FAM195A38080
FAM98A36080
FASTKD536080
FEZ233020
FST33060
GADD45G33070

B, Top 10 nodes most significantly associated with other nodes in the protein-protein interaction network of set 2

Gene symbolDegreeClustering coefficientEccentricityBetweenness centrality

AA467197184020
AATK120080
ABCA7120070
ACAD9116020
ACBD6113080
ACSL3111090
AFG3L1109070
AGAP1109080
AHNAK106090
ANGEL2106070

[i] Set 1, coincident differentially expressed genes in angiosarcoma tumor cells treated with propranolol for 4 h and treated with propranolol for 4 h compared with treated without propranolol; set 2, differentially expressed genes in angiosarcoma tumor cells treated with propranolol for 24 h compared with treated without propranolol, but not in angiosarcoma tumor cells treated with propranolol for 4 h compared with treated without propranolol.

Discussion

Numerous studies have demonstrated the selective cytotoxicity and relative safety of propranolol on vascular tumors, and laid the groundwork for the notable efficacy and the suppressive ability of propranolol on angiosarcoma (911,1820). In the present study, it was found that the number of DEGs-24 h was higher compared with the number of DEGs-4 h. In addition, nearly all of the DEGs-4 h overlapped with and were contained in the DEGs-24 h group. Furthermore, differential expression (upregulated or downregulated) of DEGs-24 h was more evident compared with DEGs-4 h. This indicated that the 401 overlapping DEGs in set 1 were important in the effects of propranolol on angiosarcoma tumor cells. Notably, 9 upregulated DEGs of the DEGs-4 h group were downregulated in the DEGs-24 h group, whereas 26 downregulated DEGs of the DEGs-4 h group were upregulated in the DEGs-24 h group. It was possible that these genes perform multiple roles in the effect of propranolol on angiosarcoma; however, this conjecture requires additional experimental verification.

The enriched GO terms of set 1 primarily contained ‘angiogenesis, blood vessel morphogenesis, vasculature development’, ‘sterol biosynthetic process, cholesterol biosynthetic process, lipid biosynthetic process’, ‘lysosome, lytic vacuole, vacuole’, and ‘nucleolus, intracellular non-membrane-bounded organelle, regulation of cell proliferation’. It is well known that lipid metabolism may affect the development of blood vessels (2123) and various organelles involved in various biological processes (23,24). Cell proliferation is an essential process in the development of blood vessels (25). According to Table IA, the majority of enriched GO terms of set 1 were associated with the biological processes of blood vessels, whereas the enriched GO terms of set 2 were primarily associated with energy metabolism (including ribosome, structural constituent of ribosome), protein transfer (including ribonucleoprotein complex, ribosome, membrane-enclosed lumen) and compounds biosynthesis (including RNA processing, mRNA metabolic process and envelope). The overlapping enriched GO terms of sets 1 and 2 were primarily involved in nucleic acid metabolism, nucleotide biosynthesis and nucleic acid binding. Therefore, it was concluded that propranolol affected angiosarcoma primarily by influencing the biological processes of blood vessels in the early stage and by effecting the biological metabolism and transfer processes in the later stage. The enriched KEGG pathways of set 1 were tumor-associated biological processes, including the p53 signaling pathway and cysteine and methionine metabolism. In the later stage, the enriched KEGG pathways were more extensive, including the ribosome signaling pathway, lysosome signaling pathway, Huntington's disease and Parkinson's disease.

According to the topological structure analysis of the PPI networks, certain potential biomarkers were identified, including AXL, coatomer subunit α, DR1-associated protein 1, ERBB receptor feedback inhibitor 1, family with sequence similarity 195 member A, expressed sequence AA467197, apoptosis-associated tyrosine kinase, ATP-binding cassette subfamily A member 7, acyl-CoA dehydrogenase family member 9 and acyl-CoA-binding domain containing 6. According to Table VA, AXL was the most significantly meaningful gene in the early stage. AXL is a member of the tyrosine kinase receptor family and is associated with cell adhesion and recognition, cell proliferation, apoptosis, blood coagulation and inflammation (26). It performs important roles in the occurrence and development of various tumors, including the inhibition of tumor cell apoptosis, the involvement in tumor angiogenesis and cellular invasion (2730). Following its original identification, the upregulation of Axl has been reported in a variety of hematopoietic tumors, including leukemia and melanoma (3135). Furthermore, previous studies have demonstrated that Axl may also perform a role in a number of chemotherapy-resistant cancers (36,37). In the present study, it was proposed that Axl may be a potential target in the early stage of angiosarcoma treated with propranolol. This discovery may indicate an important direction for future studies. Similarly, AA467197 may be a potential biomarker in the late stage of angiosarcoma treated with propranolol. It is a key point of the effects of propranolol on angiosarcoma to identify and develop small-molecule drugs with the potential to selectively inhibit Axl and AA467197 expression and their signaling pathways.

Acknowledgements

The present study was supported by the Municipal Science and Technology Commission of Tianjin (grant no. 15ZLZLZF00440) and the Health Bureau Science and Technology Foundation of Tianjin (grant nos. 2012KZ063 and 2014KZ102).

References

1 

Pawlik TM, Paulino AF, McGinn CJ, Baker LH, Cohen DS, Morris JS, Rees R and Sondak VK: Cutaneous angiosarcoma of the scalp: A multidisciplinary approach. Cancer. 98:1716–1726. 2003. View Article : Google Scholar : PubMed/NCBI

2 

Young RJ, Brown NJ, Reed MW, Hughes D and Woll PJ: Angiosarcoma. Lancet Oncol. 11:983–991. 2010. View Article : Google Scholar : PubMed/NCBI

3 

Kuntzen D, Hanel M Tufail, Kuntzen T, Yurtsever H, Tuma J, Hopfer H, Springer O and Bock A: Malignant hemangiosarcoma in a renal allograft: Diagnostic difficulties and clinical course after nephrectomy and immunostimulation. Transpl Int. 27:e70–e75. 2014. View Article : Google Scholar : PubMed/NCBI

4 

Scow JS, Reynolds CA, Degnim AC, Petersen IA, Jakub JW and Boughey JC: Primary and secondary angiosarcoma of the breast: The Mayo Clinic experience. J Surg Oncol. 101:401–407. 2010.PubMed/NCBI

5 

Babarović E, Zamolo G, Mustać E and Strčić M: High grade angiosarcoma arising in fibroadenoma. Diagn Pathol. 6:1252011. View Article : Google Scholar : PubMed/NCBI

6 

Terada T: Angiosarcoma of the mandibular gingiva. Int J Clin Exp Pathol. 4:791–793. 2011.PubMed/NCBI

7 

Sher SJ, Mujtaba MA, Yaqub MS, Taber TE, Mishler DP and Sharfuddin AA: Early fatal cutaneous lower extremity angiosarcoma associated with deep venous thrombosis in a renal transplant recipient. Exp Clin Transplant. Jul 2–2015.(Epub ahead of print). PubMed/NCBI

8 

Kan T, Yanase T, Kawai M and Hide M: Angiosarcoma of elderly patients treated with weekly low-dose docetaxel in combination with radiotherapy. Skin Cancer. 28:20–23. 2013. View Article : Google Scholar

9 

Stiles JM, Amaya C, Rains S, Diaz D, Pham R, Battiste J, Modiano JF, Kokta V, Boucheron LE, Mitchell DC and Bryan BA: Targeting of beta adrenergic receptors results in therapeutic efficacy against models of hemangioendothelioma and angiosarcoma. PLoS One. 8:e600212013. View Article : Google Scholar : PubMed/NCBI

10 

Albiñana V, Gómez de Las Heras K Villar, Serrano-Heras G, Segura T, Perona-Moratalla AB, Mota-Pérez M, de Campos JM and Botella LM: Propranolol reduces viability and induces apoptosis in hemangioblastoma cells from von Hippel-Lindau patients. Orphanet J Rare Dis. 10:1182015. View Article : Google Scholar : PubMed/NCBI

11 

El Hachem M, Bonamonte D, Diociaiuti A, Mantuano M and Teruzzi C: Cost-utility analysis of propranolol versus corticosteroids in the treatment of proliferating infantile hemangioma in Italy. PharmacoEconomics Italian Res Artic. 17:22015. View Article : Google Scholar

12 

Diboun I, Wernisch L, Orengo CA and Koltzenburg M: Microarray analysis after RNA amplification can detect pronounced differences in gene expression using limma. BMC Genomics. 7:2522006. View Article : Google Scholar : PubMed/NCBI

13 

Sherman BT, da W Huang, Tan Q, Guo Y, Bour S, Liu D, Stephens R, Baseler MW, Lane HC and Lempicki RA: DAVID Knowledgebase: A gene-centered database integrating heterogeneous gene annotation resources to facilitate high-throughput gene functional analysis. BMC Bioinformatics. 8:4262007. View Article : Google Scholar : PubMed/NCBI

14 

Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, et al: STRING v10: Protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 43:D447–D452. 2015. View Article : Google Scholar : PubMed/NCBI

15 

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B and Ideker T: Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 13:2498–2504. 2003. View Article : Google Scholar : PubMed/NCBI

16 

Bandettini WP, Kellman P, Mancini C, Booker OJ, Vasu S, Leung SW, Wilson JR, Shanbhag SM, Chen MY and Arai AE: MultiContrast delayed enhancement (MCODE) improves detection of subendocardial myocardial infarction by late gadolinium enhancement cardiovascular magnetic resonance: A clinical validation study. J Cardiovasc Magn Reson. 14:832012. View Article : Google Scholar : PubMed/NCBI

17 

Yip KY, Yu H, Kim PM, Schultz M and Gerstein M: The tYNA platform for comparative interactomics: A web tool for managing, comparing and mining multiple networks. Bioinformatics. 22:2968–2970. 2006. View Article : Google Scholar : PubMed/NCBI

18 

Gong H, Xu DP, Li YX, Cheng C, Li G and Wang XK: Evaluation of the efficacy and safety of propranolol, timolol maleate, and the combination of the two, in the treatment of superficial infantile haemangiomas. Br J Oral Maxillofac Surg. 53:836–840. 2015. View Article : Google Scholar : PubMed/NCBI

19 

Oksiuta M, Matuszczak E, Debek W, Dzienis-Koronkiewicz E and Hermanowicz A: Treatment of rapidly proliferating haemangiomas in newborns with propranolol and review of the literature. J Matern Fetal Neonatal Med. 29:64–68. 2016. View Article : Google Scholar : PubMed/NCBI

20 

Praticò AD, Caraci F, Pavone P, Falsaperla R, Drago F and Ruggieri M: Propranolol: Effectiveness and failure in infantile cutaneous hemangiomas. Drug Saf Case Rep. 2:62015. View Article : Google Scholar : PubMed/NCBI

21 

Sanwald R and Wagener H: Enzymes of the carbohydrate, lipid and protein metabolism in the blood vessels of the miniature pig. Z Gesamte Exp Med. 145:353–355. 1968.(In German). View Article : Google Scholar : PubMed/NCBI

22 

Stroev IuI, Volgin EG, Bodrov VE and Chuchman AD: Changes in elastic and viscous properties of blood vessels in patients with diabetes mellitus and their relationship with disorders of glycoprotein and lipid metabolism. Kardiologiia. 16:130–132. 1976.(In Russian). PubMed/NCBI

23 

Hassan HH, Denis M, Krimbou L, Marcil M and Genest J: Cellular cholesterol homeostasis in vascular endothelial cells. Can J Cardiol. 22 Suppl B:B35–B40. 2006. View Article : Google Scholar

24 

Lee CH, Poburko D, Kuo KH, Seow CY and van Breemen C: Ca(2+) oscillations, gradients, and homeostasis in vascular smooth muscle. Am J Physiol Heart Circ Physiol. 282:H1571–H1583. 2002. View Article : Google Scholar : PubMed/NCBI

25 

Ausprunk DH and Folkman J: Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis. Microvasc Res. 14:53–65. 1977. View Article : Google Scholar : PubMed/NCBI

26 

Anderson M, Ober A, Mollard A, Call L, Bearss JJ, Vankayalapati H, Sharma S, Warner S and Bearss DJ: Abstract 5543: Inhibition of the tyrosine kinase receptor Axl blocks cell invasion and promotes apoptosis in pancreatic cancer cells. Cancer Res. 73:5543. 2013. View Article : Google Scholar

27 

Mudduluru G and Allgayer H: The human receptor tyrosine kinase Axl gene-promoter characterization and regulation of constitutive expression by Sp1, Sp3 and CpG methylation. Biosci Rep. 28:161–176. 2008.PubMed/NCBI

28 

Mudduluru G, Vajkoczy P and Allgayer H: Myeloid zinc finger 1 induces migration, invasion, and in vivo metastasis through Axl gene expression in solid cancer. Mol Cancer Res. 8:159–169. 2010. View Article : Google Scholar : PubMed/NCBI

29 

Hafizi S and Dahlbäck B: Signalling and functional diversity within the Axl subfamily of receptor tyrosine kinases. Cytokine Growth Factor Rev. 17:295–304. 2006. View Article : Google Scholar : PubMed/NCBI

30 

Axelrod H and Pienta KJ: Axl as a mediator of cellular growth and survival. Oncotarget. 5:8818–8852. 2014. View Article : Google Scholar : PubMed/NCBI

31 

Rochlitz C, Lohri A, Bacchi M, Schmidt M, Nagel S, Fopp M, Fey MF, Herrmann R and Neubauer A: Axl expression is associated with adverse prognosis and with expression of Bcl-2 and CD34 in de novo acute myeloid leukemia (AML): Results from a multicenter trial of the Swiss group for clinical cancer research (SAKK). Leukemia. 13:1352–1358. 1999. View Article : Google Scholar : PubMed/NCBI

32 

Challier C, Uphoff CC, Janssen JW and Drexler HG: Differential expression of the ufo/axl oncogene in human leukemia-lymphoma cell lines. Leukemia. 10:781–787. 1996.PubMed/NCBI

33 

Neubauer A, O'Bryan JP, Fiebeler A, Schmidt C, Huhn D and Liu ET: Axl, a novel receptor tyrosine kinase isolated from chronic myelogenous leukemia. Semin Hematol. 30(3 Suppl 3): S341993.

34 

Tworkoski K, Singhal G, Szpakowski S, Zito CI, Bacchiocchi A, Muthusamy V, Bosenberg M, Krauthammer M, Halaban R and Stern DF: Phosphoproteomic screen identifies potential therapeutic targets in melanoma. Mol Cancer Res. 9:801–812. 2011. View Article : Google Scholar : PubMed/NCBI

35 

Green J, Ikram M, Vyas J, Patel N, Proby CM, Ghali L, Leigh IM, O'Toole EA and Storey A: Overexpression of the Axl tyrosine kinase receptor in cutaneous SCC-derived cell lines and tumours. Br J Cancer. 94:1446–1451. 2006. View Article : Google Scholar : PubMed/NCBI

36 

Liu L, Greger J, Shi H, Liu Y, Greshock J, Annan R, Halsey W, Sathe GM, Martin AM and Gilmer TM: Novel mechanism of lapatinib resistance in HER2-positive breast tumor cells: Activation of AXL. Cancer Res. 69:6871–6878. 2009. View Article : Google Scholar : PubMed/NCBI

37 

Hong CC, Lay JD, Huang JS, Cheng AL, Tang JL, Lin MT, Lai GM and Chuang SE: Receptor tyrosine kinase AXL is induced by chemotherapy drugs and overexpression of AXL confers drug resistance in acute myeloid leukemia. Cancer Lett. 268:314–324. 2008. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

June-2017
Volume 13 Issue 6

Print ISSN: 1792-1074
Online ISSN:1792-1082

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Zhou S, Liu P, Jiang W and Zhang H: Identification of potential target genes associated with the effect of propranolol on angiosarcoma via microarray analysis. Oncol Lett 13: 4267-4275, 2017
APA
Zhou, S., Liu, P., Jiang, W., & Zhang, H. (2017). Identification of potential target genes associated with the effect of propranolol on angiosarcoma via microarray analysis. Oncology Letters, 13, 4267-4275. https://doi.org/10.3892/ol.2017.5968
MLA
Zhou, S., Liu, P., Jiang, W., Zhang, H."Identification of potential target genes associated with the effect of propranolol on angiosarcoma via microarray analysis". Oncology Letters 13.6 (2017): 4267-4275.
Chicago
Zhou, S., Liu, P., Jiang, W., Zhang, H."Identification of potential target genes associated with the effect of propranolol on angiosarcoma via microarray analysis". Oncology Letters 13, no. 6 (2017): 4267-4275. https://doi.org/10.3892/ol.2017.5968