Epithelial-mesenchymal transition in cancer: Role of the IL-8/IL-8R axis (Review)
- Authors:
- Zhiwei Zhao
- Shichao Wang
- Yingbo Lin
- Yali Miao
- Ye Zeng
- Yongmei Nie
- Peng Guo
- Guangyao Jiang
- Jiang Wu
-
Affiliations: West China Medical Center, Sichuan University, Chengdu, Sichuan 610041, P.R. China, Department of Oncology and Pathology, Karolinska Institute, Cancer Centre Karolinska, SE‑171 76 Stockholm, Sweden, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China, School of Basic Medicine, Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China, Outpatient Building, West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China - Published online on: April 13, 2017 https://doi.org/10.3892/ol.2017.6034
- Pages: 4577-4584
This article is mentioned in:
Abstract
Figure 1
![]() |
Lee K and Nelson CM: New insights into the regulation of epithelial-mesenchymal transition and tissue fibrosis. Int Rev Cell Mol Biol. 294:171–221. 2012. View Article : Google Scholar : PubMed/NCBI | |
Desai S, Laskar S and Pandey BN: Autocrine IL-8 and VEGF mediate epithelial-mesenchymal transition and invasiveness via p38/JNK-ATF-2 signalling in A549 lung cancer cells. Cell Signal. 25:1780–1791. 2013. View Article : Google Scholar : PubMed/NCBI | |
Nieto MA: The ins and outs of the epithelial to mesenchymal transition in health and disease. Annu Rev Cell Dev Biol. 27:347–376. 2011. View Article : Google Scholar : PubMed/NCBI | |
Li XJ, Peng LX, Shao JY, Lu WH, Zhang JX, Chen S, Chen ZY, Xiang YQ, Bao YN, Zheng FJ, et al: As an independent unfavorable prognostic factor, IL-8 promotes metastasis of nasopharyngeal carcinoma through induction of epithelial-mesenchymal transition and activation of AKT signaling. Carcinogenesis. 33:1302–1309. 2012. View Article : Google Scholar : PubMed/NCBI | |
Mathias RA, Gopal SK and Simpson RJ: Contribution of cells undergoing epithelial-mesenchymal transition to the tumour microenvironment. J Proteomics. 78:545–57. 2013. View Article : Google Scholar : PubMed/NCBI | |
Palena C, Hamilton DH and Fernando RI: Influence of IL-8 on the epithelial-mesenchymal transition and the tumor microenvironment. Future Oncol. 8:713–722. 2012. View Article : Google Scholar : PubMed/NCBI | |
Malmberg KJ and Ljunggren HG: Escape from immune- and nonimmune-mediated tumor surveillance. Semin Cancer Biol. 16:16–31. 2006. View Article : Google Scholar : PubMed/NCBI | |
Koch AE, Polverini PJ, Kunkel SL, Harlow LA, DiPietro LA, Elner VM, Elner SG and Strieter RM: Interleukin-8 as a macrophage-derived mediator of angiogenesis. Science. 258:1798–1801. 1992. View Article : Google Scholar : PubMed/NCBI | |
Bhusari PA and Khairnar KB: Greater omental pancake tumour due to metastasis of ovarian cancer-a cadaveric study. J Clin Diagn Res. 8:142–143. 2014.PubMed/NCBI | |
Yu J, Ren X, Chen Y, Liu P, Wei X, Li H, Ying G, Chen K, Winkler H and Hao X: Dysfunctional activation of neurotensin/IL-8 pathway in hepatocellular carcinoma is associated with increased inflammatory response in microenvironment, more epithelial mesenchymal transition in cancer and worse prognosis in patients. PLoS One. 8:e560692013. View Article : Google Scholar : PubMed/NCBI | |
Fernando RI, Castillo MD, Litzinger M, Hamilton DH and Palena C: IL-8 signaling plays a critical role in the epithelial-mesenchymal transition of human carcinoma cells. Cancer Res. 71:5296–5306. 2011. View Article : Google Scholar : PubMed/NCBI | |
Islam SS, Mokhtari RB, El Hout Y, Azadi MA, Alauddin M, Yeger H and Farhat WA: TGF-β1 induces EMT reprogramming of porcine bladder urothelial cells into collagen producing fibroblasts-like cells in a Smad2/Smad3-dependent manner. J Cell Commun Signal. 8:39–58. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bose SK, Meyer K, Di Bisceglie AM, Ray RB and Ray R: Hepatitis C virus induces epithelial-mesenchymal transition in primary human hepatocytes. J Virol. 86:13621–13628. 2012. View Article : Google Scholar : PubMed/NCBI | |
Radisky DC, Levy DD, Littlepage LE, Liu H, Nelson CM, Fata JE, Leake D, Godden EL, Albertson DG, Nieto MA, et al: Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature. 436:123–127. 2005. View Article : Google Scholar : PubMed/NCBI | |
Ye Y, Liu P, Wang Y, Li H, Wei F, Cheng Y, Han L and Yu J: Neurotensin, a novel messenger to cross-link inflammation and tumor invasion via epithelial-mesenchymal transition pathway. Int Rev Immunol. 35:340–350. 2016.PubMed/NCBI | |
Zhou N, Lu F, Liu C, Xu K, Huang J, Yu D and Bi L: IL-8 induces the epithelial-mesenchymal transition of renal cell carcinoma cells through the activation of AKT signaling. Oncol Lett. 12:1915–1920. 2016.PubMed/NCBI | |
Nieto MA: Epithelial plasticity: A common theme in embryonic and cancer cells. Science. 342:12348502013. View Article : Google Scholar : PubMed/NCBI | |
Hugo H, Ackland ML, Blick T, Lawrence MG, Clements JA, Williams ED and Thompson EW: Epithelial-mesenchymal and mesenchymal-epithelial transitions in carcinoma progression. J Cell Physiol. 213:374–383. 2007. View Article : Google Scholar : PubMed/NCBI | |
Thiery JP, Acloque H, Huang RY and Nieto MA: Epithelial-mesenchymal transitions in development and disease. Cell. 139:871–890. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kim MJ, Doh II, Bae GY, Cha HJ and Cho YH: Cell-matrix adhesion characterization using multiple shear stress zones in single stepwise microchannel. Appl Phys Lett. 105:0837012016. View Article : Google Scholar | |
Rokavec M, Öner MG, Li H, Jackstadt R, Jiang L, Lodygin D, Kaller M, Horst D, Ziegler PK, Schwitalla S, et al: IL-6R/STAT3/miR-34a feedback loop promotes EMT-mediated colorectal cancer invasion and metastasis. J Clin Invest. 124:1853–1867. 2014. View Article : Google Scholar : PubMed/NCBI | |
Berx G, Raspé E, Christofori G, Thiery JP and Sleeman JP: Pre-EMTing metastasis? Recapitulation of morphogenetic processes in cancer. Clin Exp Metastasis. 24:587–597. 2007. View Article : Google Scholar : PubMed/NCBI | |
Yang J and Weinberg RA: Epithelial-mesenchymal transition: At the crossroads of development and tumor metastasis. Dev Cell. 14:818–829. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ota I, Li XY, Hu Y and Weiss SJ: Induction of a MT1-MMP and MT2-MMP-dependent basement membrane transmigration program in cancer cells by Snail1. Proc Natl Acad Sci USA. 106:pp. 20318–20323. 2009; View Article : Google Scholar : PubMed/NCBI | |
Sarrio D, Rodriguez-Pinilla SM, Hardisson D, Cano A, Moreno-Bueno G and Palacios J: Epithelial-mesenchymal transition in breast cancer relates to the basal-like phenotype. Cancer Res. 68:989–997. 2008. View Article : Google Scholar : PubMed/NCBI | |
Desai S, Kumar A, Laskar S and Pandey BN: Cytokine profile of conditioned medium from human tumor cell lines after acute and fractionated doses of gamma radiation and its effect on survival of bystander tumor cells. Cytokine. 61:54–62. 2013. View Article : Google Scholar : PubMed/NCBI | |
Dudley AT, Lyons KM and Robertson EJ: A requirement for bone morphogenetic protein-7 during development of the mammalian kidney and eye. Genes Dev. 9:2795–2807. 1995. View Article : Google Scholar : PubMed/NCBI | |
Illman SA, Lehti K, Keski-Oja J and Lohi J: Epilysin (MMP-28) induces TGF-beta mediated epithelial to mesenchymal transition in lung carcinoma cells. J Cell Science. 119:3856–3865. 2006. View Article : Google Scholar : PubMed/NCBI | |
Xiong M, Jiang L, Zhou Y, Qiu W, Fang L, Tan R, Wen P and Yang J: The miR-200 family regulates TGF-β1-induced renal tubular epithelial to mesenchymal transition through Smad pathway by targeting ZEB1 and ZEB2 expression. Am J Physiol Renal Physiol. 302:F369–F379. 2012. View Article : Google Scholar : PubMed/NCBI | |
Park GB, Kim D, Kim YS, Kim S, Lee HK, Yang JW and Hur DY: The Epstein-Barr virus causes epithelial-mesenchymal transition in human corneal epithelial cells via Syk/src and Akt/Erk signaling pathways. Invest Ophthalmol Vis Sci. 55:1770–1779. 2014. View Article : Google Scholar : PubMed/NCBI | |
Guo CB, Wang S, Deng C, Zhang DL, Wang FL and Jin XQ: Relationship between matrix metalloproteinase 2 and lung cancer progression. Mol Diagn Ther. 11:183–192. 2007. View Article : Google Scholar : PubMed/NCBI | |
Gregory AD and Houghton AM: Tumor-associated neutrophils: New targets for cancer therapy. Cancer Res. 71:2411–2416. 2011. View Article : Google Scholar : PubMed/NCBI | |
Fang S, Yu L, Mei H, Yang J, Gao T, Cheng A, Guo W, Xia K and Liu G: Cisplatin promotes mesenchymal-like characteristics in osteosarcoma through Snail. Oncol Lett. 12:5007–5014. 2016.PubMed/NCBI | |
Alba-Castellon L, Olivera-Salguero R, Mestre-Farrera A, Pena R, Herrera M, Bonilla F, Casal JI, Baulida J, Peña C and García de Herreros A: Snail1-dependent activation of cancer-associated fibroblast controls epithelial tumor cell invasion and metastasis. Cancer Res. 76:6205–6217. 2016. View Article : Google Scholar : PubMed/NCBI | |
Haraguchi M, Sato M and Ozawa M: CRISPR/Cas9n-mediated deletion of the Snail 1Gene (SNAI1) reveals its role in regulating cell morphology, cell-cell interactions and gene expression in ovarian cancer (RMG-1) cells. PLoS One. 10:e01322602015. View Article : Google Scholar : PubMed/NCBI | |
Hwang WL, Yang MH, Tsai ML, Lan HY, Su SH, Chang SC, Teng HW, Yang SH, Lan YT, Chiou SH and Wang HW: SNAIL regulates interleukin-8 expression, stem cell-like activity and tumorigenicity of human colorectal carcinoma cells. Gastroenterology. 141:279–291, 291.e1-e5. 2011. View Article : Google Scholar : PubMed/NCBI | |
Leong KG, Niessen K, Kulic I, Raouf A, Eaves C, Pollet I and Karsan A: Jagged1-mediated Notch activation induces epithelial-to-mesenchymal transition through Slug-induced repression of E-cadherin. J Exp Med. 204:2935–2948. 2007. View Article : Google Scholar : PubMed/NCBI | |
Niessen K, Fu Y, Chang L, Hoodless PA, McFadden D and Karsan A: Slug is a direct Notch target required for initiation of cardiac cushion cellularization. J Cell Biol. 182:315–325. 2008. View Article : Google Scholar : PubMed/NCBI | |
Sahlgren C, Gustafsson MV, Jin S, Poellinger L and Lendahl UL: Notch signaling mediates hypoxia-induced tumor cell migration and invasion. Proc Natl Acad Sci USA. 105:pp. 6392–6397. 2008; View Article : Google Scholar : PubMed/NCBI | |
Timmerman LA, Grego-Bessa J, Raya A, Bertrén E, Pérez-Pomares JM, Díez J, Aranda S, Palomo S, McCormick F, Izpisúa-Belmonte JC and de la Pompa JL: Notch promotes epithelial-mesenchymal transition during cardiac development and oncogenic transformation. Genes Dev. 18:99–115. 2004. View Article : Google Scholar : PubMed/NCBI | |
Yanagawa J, Walser TC, Zhu LX, Hong L, Fishbein MC, Mah V, Chia D, Goodglick L, Elashoff DA, Luo J, et al: Snail promotes CXCR2 ligand-dependent tumor progression in non-small cell lung carcinoma. Clin Cancer Res. 15:6820–6829. 2009. View Article : Google Scholar : PubMed/NCBI | |
Liu ZC, Chen XH, Song HX, Wang HS, Zhang G, Wang H, Chen DY, Fang R, Liu H, Cai SH and Du J: Snail regulated by PKC/GSK-3β pathway is crucial for EGF-induced epithelial-mesenchymal transition (EMT) of cancer cells. Cell Tissue Res. 358:491–502. 2014. View Article : Google Scholar : PubMed/NCBI | |
Gras B, Jacqueroud L, Wierinckx A, Lamblot C, Fauvet F, Lachuer J, Puisieux A and Ansieau S: Snail family members unequally trigger EMT and thereby differ in their ability to promote the neoplastic transformation of mammary epithelial cells. PLoS One. 9:e922542014. View Article : Google Scholar : PubMed/NCBI | |
Wettstein G, Bellaye PS, Kolb M, Hammann A, Crestani B, Soler P, Marchal-Somme J, Hazoume A, Gauldie J, Gunther A, et al: Inhibition of HSP27 blocks fibrosis development and EMT features by promoting Snail degradation. FASEB J. 27:1549–1560. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zheng H and Kang Y: Multilayer control of the EMT master regulators. Oncogene. 33:1755–1763. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Zhou Y and Yang Y: CCR7 pathway induces epithelial-mesenchymal transition through up-regulation of Snail signaling in gastric cancer. Med Oncol. 32:4672015.PubMed/NCBI | |
Sullivan NJ, Sasser AK, Axel AE, Vesuna F, Raman V, Ramirez N, Oberyszyn TM and Hall BM: Interleukin-6 induces an epithelial-mesenchymal transition phenotype in human breast cancer cells. Oncogene. 28:2940–2947. 2009. View Article : Google Scholar : PubMed/NCBI | |
Gonzalez-Moreno O, Lecanda J, Green JE, Segura V, Catena R, Serrano D and Calvo A: VEGF elicits epithelial-mesenchymal transition (EMT) in prostate intraepithelial neoplasia (PIN)-like cells via an autocrine loop. Exp Cell Res. 316:554–567. 2010. View Article : Google Scholar : PubMed/NCBI | |
Mironchik Y, Winnard PT Jr, Vesuna F, Kato Y, Wildes F, Pathak AP, Kominsky S, Artemov D, Bhujwalla Z, van Diest P, et al: Twist overexpression induces in vivo angiogenesis and correlates with chromosomal instability in breast cancer. Cancer Res. 65:10801–10809. 2005. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Yao X, Ge J, Hu F and Zhao Y: Can vascular endothelial growth factor and microvessel density be used as prognostic biomarkers for colorectal cancer? A systematic review and meta-analysis. ScientificWorldJournal. 2014:1027362014.PubMed/NCBI | |
Maxwell PJ, Coulter J, Walker SM, McKechnie M, Neisen J, McCabe N, Kennedy RD, Salto-Tellez M, Albanese C and Waugh DJ: Potentiation of inflammatory CXCL8 signalling sustains cell survival in PTEN-deficient prostate carcinoma. Eur Urol. 64:177–88. 2013. View Article : Google Scholar : PubMed/NCBI | |
Murphy C, McGurk M, Pettigrew J, Santinelli A, Mazzucchelli R, Johnston PG, Montironi R and Waugh DJ: Nonapical and cytoplasmic expression of interleukin-8, CXCR1, and CXCR2 correlates with cell proliferation and microvessel density in prostate cancer. Clin Cancer Res. 11:4117–4127. 2005. View Article : Google Scholar : PubMed/NCBI | |
Ogura M, Takeuchi H, Kawakubo H, Nishi T, Fukuda K, Nakamura R, Takahashi T, Wada N, Saikawa Y, Omori T, et al: Clinical significance of CXCL-8/CXCR-2 network in esophageal squamous cell carcinoma. Surgery. 154:512–520. 2013. View Article : Google Scholar : PubMed/NCBI | |
Uzunoglu FG, Yavari N, Bohn BA, Nentwich MF, Reeh M, Pantel K, Perez D, Tsui TY, Bockhorn M, Mann O, et al: C-X-C motif receptor 2, endostatin and proteinase-activated receptor 1 polymorphisms as prognostic factors in NSCLC. Lung Cancer. 81:123–129. 2013. View Article : Google Scholar : PubMed/NCBI | |
Pecot CV, Rupaimoole R, Yang D, Akbani R, Ivan C, Lu C, Wu S, Han HD, Shah MY, Rodriguez-Aguayo C, et al: Tumour angiogenesis regulation by the miR-200 family. Nat Commun. 4:24272013. View Article : Google Scholar : PubMed/NCBI | |
Mendonca MA, Souto FO, Micheli DC, Alves-Filho JC, Cunha FQ, Murta EF and Tavares-Murta BM: Mechanisms affecting neutrophil migration capacity in breast cancer patients before and after chemotherapy. Cancer Chemother Pharmacol. 73:317–324. 2014. View Article : Google Scholar : PubMed/NCBI | |
Merritt WM, Lin YG, Spannuth WA, Fletcher MS, Kamat AA, Han LY, Landen CN, Jennings N, de Geest K, Langley RR, et al: Effect of interleukin-8 gene silencing with liposome-encapsulated small interfering RNA on ovarian cancer cell growth. J Natl Cancer Inst. 100:359–372. 2008. View Article : Google Scholar : PubMed/NCBI | |
Papassava P, Gorgoulis VG, Papaevangeliou D, Vlahopoulos S, van Dam H and Zoumpourlis V: Overexpression of activating transcription factor-2 is required for tumor growth and progression in mouse skin tumors. Cancer Res. 64:8573–8584. 2004. View Article : Google Scholar : PubMed/NCBI | |
Tindberg N, Porsmyr-Palmertz M and Simi A: Contribution of MAP kinase pathways to the activation of ATF-2 in human neuroblastoma cells. Neurochem Res. 25:527–531. 2000. View Article : Google Scholar : PubMed/NCBI | |
Ricote M, Garcia-Tunon I, Bethencourt F, Fraile B, Onsurbe P, Paniagua R and Royuela M: The p38 transduction pathway in prostatic neoplasia. J Pathol. 208:401–407. 2006. View Article : Google Scholar : PubMed/NCBI | |
Eliopoulos AG, Gallagher NJ, Blake SM, Dawson CW and Young LS: Activation of the p38 mitogen-activated protein kinase pathway by Epstein-Barr virus-encoded latent membrane protein 1 coregulates interleukin-6 and interleukin-8 production. J Biol Chem. 274:16085–16096. 1999. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Tang C, Cao H, Li K, Pang X, Zhong L, Dang W, Tang H, Huang Y, Wei L, et al: Activation of IL-8 via PI3K/Akt-dependent pathway is involved in leptin-mediated epithelial-mesenchymal transition in human breast cancer cells. Cancer Biol Ther. 16:1220–1230. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hill R, Calvopina JH, Kim C, Wang Y, Dawson DW, Donahue TR, Dry S and Wu H: PTEN loss accelerates KrasG12D-induced pancreatic cancer development. Cancer Res. 70:7114–7124. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yan W, Han P, Zhou Z, Tu W, Liao J, Li P, Liu M, Tian D and Fu Y: Netrin-1 induces epithelial-mesenchymal transition and promotes hepatocellular carcinoma invasiveness. Dig Dis Sci. 59:1213–1221. 2014. View Article : Google Scholar : PubMed/NCBI | |
Song J, Feng L, Zhong R, Xia Z, Zhang L, Cui L, Yan H, Jia X and Zhang Z: Icariside II inhibits the EMT of NSCLC cells in inflammatory microenvironment via down-regulation of Akt/NF-κB signaling pathway. Mol Carcinog. 56:36–48. 2017. View Article : Google Scholar : PubMed/NCBI | |
Voorzanger N, Touitou R, Garcia E, Delecluse HJ, Rousset F, Joab I, Favrot MC and Blay JY: Interleukin (IL)-10 and IL-6 are produced in vivo by non-Hodgkin's lymphoma cells and act as cooperative growth factors. Cancer Res. 56:5499–5505. 1996.PubMed/NCBI | |
Carpenter RL, Paw I, Dewhirst MW and Lo HW: Akt phosphorylates and activates HSF-1 independent of heat shock, leading to Slug overexpression and epithelial-mesenchymal transition (EMT) of HER2-overexpressing breast cancer cells. Oncogene. 34:546–557. 2015. View Article : Google Scholar : PubMed/NCBI | |
Baranwal S and Alahari SK: Molecular mechanisms controlling E-cadherin expression in breast cancer. Biochem Biophys Res Commun. 384:6–11. 2009. View Article : Google Scholar : PubMed/NCBI | |
Moon HG, Zheng Y, An CH, Kim YK and Jin Y: CCN1 secretion induced by cigarette smoking extracts augments IL-8 release from bronchial epithelial cells. PLoS One. 8:e681992013. View Article : Google Scholar : PubMed/NCBI | |
Cai J, Guan H, Fang L, Yang Y, Zhu X, Yuan J, Wu J and Li M: MicroRNA-374a activates Wnt/β-catenin signaling to promote breast cancer metastasis. J Clin Invest. 123:566–579. 2013.PubMed/NCBI | |
Zappulli V, de Cecco S, Trez D, Caliari D, Aresu L and Castagnaro M: Immunohistochemical expression of E-cadherin and β-catenin in feline mammary tumours. J Comp Pathol. 147:161–170. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ahn SH, Park H, Ahn YH, Kim S, Cho MS, Kang JL and Choi YH: Necrotic cells influence migration and invasion of glioblastoma via NF-κB/AP-1-mediated IL-8 regulation. Sci Rep. 6:245522016. View Article : Google Scholar : PubMed/NCBI | |
Cheng XS, Li YF, Tan J, Sun B, Xiao YC, Fang XB, Zhang XF, Li Q, Dong JH, Li M, et al: CCL20 and CXCL8 synergize to promote progression and poor survival outcome in patients with colorectal cancer by collaborative induction of the epithelial-mesenchymal transition. Cancer Lett. 348:77–87. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhao ZW, Wang YX, Lv X, Nie YM and Wu J: Shear stress promotes epithelial-mesenchymal transition of laryngeal cancer cells by inducing IL-8/CXCR1-NF-Kappa B axis. J Invest Med. 62:S802014. | |
Choi SH, Kwon OJ, Park JY, Kim DY, Ahn SH, Kim SU, Ro SW, Kim KS, Park JH, Kim S, et al: Inhibition of tumour angiogenesis and growth by small hairpin HIF-1α and IL-8 in hepatocellular carcinoma. Liver Int. 34:632–642. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wu S, Shang H, Cui L, Zhang Z, Zhang Y, Li Y, Wu J, Li RK and Xie J: Targeted blockade of interleukin-8 abrogates its promotion of cervical cancer growth and metastasis. Mol Cell Biochem. 375:69–79. 2013.PubMed/NCBI | |
Pine SR, Mechanic LE, Enewold L, Chaturvedi AK, Katki HA, Zheng YL, Bowman ED, Engels EA, Caporaso NE and Harris CC: Increased levels of circulating interleukin 6, interleukin 8, C-reactive protein, and risk of lung cancer. J Natl Cancer Inst. 103:1112–1122. 2011. View Article : Google Scholar : PubMed/NCBI | |
Xie K: Interleukin-8 and human cancer biology. Cytokine Growth Factor Rev. 12:375–391. 2001. View Article : Google Scholar : PubMed/NCBI | |
Bates RC, DeLeo MJ III and Mercurio AM: The epithelial-mesenchymal transition of colon carcinoma involves expression of IL-8 and CXCR-1-mediated chemotaxis. Exp Cell Res. 299:315–324. 2004. View Article : Google Scholar : PubMed/NCBI | |
Yang JR, Pan TJ, Yang H, Wang T, Liu W, Liu B and Qian WH: Kindlin-2 promotes invasiveness of prostate cancer cells via NF-κB-dependent upregulation of matrix metalloproteinases. Gene. 576:571–576. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zucchini-Pascal N, Peyre L and Rahmani R: Crosstalk between beta-catenin and snail in the induction of epithelial to mesenchymal transition in hepatocarcinoma: Role of the ERK1/2 pathway. Int J Mol Sci. 14:20768–20792. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhao J, Zhang ZR, Zhao N, Ma BA and Fan QY: VEGF silencing inhibits human osteosarcoma angiogenesis and promotes cell apoptosis via PI3K/AKT signaling pathway. Int J Clin Exp Med. 8:12411–12417. 2015.PubMed/NCBI | |
Matsumoto G, Hirohata R, Hayashi K, Sugimoto Y, Kotani E, Shimabukuro J, Hirano T, Nakajima Y, Kawamata S and Mori H: Control of angiogenesis by VEGF and endostatin-encapsulated protein microcrystals and inhibition of tumor angiogenesis. Biomaterials. 35:1326–1333. 2014. View Article : Google Scholar : PubMed/NCBI | |
Shen Y, Wang D and Wang X: Role of CCR2 and IL-8 in acute lung injury: A new mechanism and therapeutic target. Expert Rev Respir Med. 5:107–114. 2011. View Article : Google Scholar : PubMed/NCBI | |
Skov L, Beurskens FJ, Zachariae CO, Reitamo S, Teeling J, Satijn D, Knudsen KM, Boot EP, Hudson D, Baadsgaard O, et al: IL-8 as antibody therapeutic target in inflammatory diseases: Reduction of clinical activity in palmoplantar pustulosis. J Immunol. 181:669–679. 2008. View Article : Google Scholar : PubMed/NCBI | |
Hatfield KJ, Olsnes AM, Gjertsen BT and Bruserud Ø: Antiangiogenic therapy in acute myelogenous leukemia: Targeting of vascular endothelial growth factor and interleukin 8 as possible antileukemic strategies. Curr Cancer Drug Targets. 5:229–248. 2005. View Article : Google Scholar : PubMed/NCBI | |
Li WH, Qiu Y, Zhang HQ, Liu Y, You JF, Tian XX and Fang WG: P2Y2 receptor promotes cell invasion and metastasis in prostate cancer cells. Br J Cancer. 109:1666–1675. 2013. View Article : Google Scholar : PubMed/NCBI | |
Waugh DJ and Wilson C: The interleukin-8 pathway in cancer. Clin Cancer Res. 14:6735–6741. 2008. View Article : Google Scholar : PubMed/NCBI | |
Schadendorf D, Möller A, Algermissen B, Worm M, Sticherling M and Czarnetzki BM: IL-8 produced by human malignant melanoma cells in vitro is an essential autocrine growth factor. J Immunol. 151:2667–2675. 1993.PubMed/NCBI | |
de Larco JE, Wuertz BR, Rosner KA, Erickson SA, Gamache DE, Manivel JC and Furcht LT: A potential role for interleukin-8 in the metastatic phenotype of breast carcinoma cells. Am J Pathol. 158:639–646. 2001. View Article : Google Scholar : PubMed/NCBI | |
Maxwell PJ, Gallagher R, Seaton A, Wilson C, Scullin P, Pettigrew J, Stratford IJ, Williams KJ, Johnston PG and Waugh DJ: HIF-1 and NF-kappaB-mediated upregulation of CXCR1 and CXCR2 expression promotes cell survival in hypoxic prostate cancer cells. Oncogene. 26:7333–7345. 2007. View Article : Google Scholar : PubMed/NCBI | |
Lattanzio L, Tonissi F, Torta I, Gianello L, Russi E, Milano G, Merlano M and Lo Nigro C: Role of IL-8 induced angiogenesis in uveal melanoma. Invest New Drugs. 31:1107–1114. 2013. View Article : Google Scholar : PubMed/NCBI | |
Li KC, Huang YH, Ho CY, Chu CY, Cha ST, Tsai HH, Ko JY, Chang CC and Tan CT: The role of IL-8 in the SDF-1α/CXCR4-induced angiogenesis of laryngeal and hypopharyngeal squamous cell carcinoma. Oral Oncol. 48:507–515. 2012. View Article : Google Scholar : PubMed/NCBI | |
Shen XH, Xu SJ, Jin CY, Ding F, Zhou YC and Fu GS: Interleukin-8 prevents oxidative stress-induced human endothelial cell senescence via telomerase activation. Int Immunopharmacol. 16:261–267. 2013. View Article : Google Scholar : PubMed/NCBI | |
Rofstad EK and Halsør EF: Vascular endothelial growth factor, interleukin 8, platelet-derived endothelial cell growth factor, and basic fibroblast growth factor promote angiogenesis and metastasis in human melanoma xenografts. Cancer Res. 60:4932–4938. 2000.PubMed/NCBI | |
Shahzad MM, Arevalo JM, Armaiz-Pena GN, Lu C, Stone RL, Moreno-Smith M, Nishimura M, Lee JW, Jennings NB, Bottsford-Miller J, et al: Stress effects on FosB- and interleukin-8 (IL8)-driven ovarian cancer growth and metastasis. J Biol Chem. 285:35462–3547070. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ginestier C, Liu S, Diebel ME, Korkaya H, Luo M, Brown M, Wicinski J, Cabaud O, Charafe-Jauffret E, Birnbaum D, et al: CXCR1 blockade selectively targets human breast cancer stem cells in vitro and in xenografts. J Clin Invest. 120:485–497. 2010. View Article : Google Scholar : PubMed/NCBI | |
Sparmann A and Bar-Sagi D: Ras-induced interleukin-8 expression plays a critical role in tumor growth and angiogenesis. Cancer Cell. 6:447–458. 2004. View Article : Google Scholar : PubMed/NCBI | |
Yin J, Zeng F, Wu N, Kang K, Yang Z and Yang H: Interleukin-8 promotes human ovarian cancer cell migration by epithelial-mesenchymal transition induction in vitro. Clin Transl Oncol. 17:365–370. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kim SW, Hayashi M, Lo JF, Fearns C, Xiang R, Lazennec G, Yang Y and Lee JD: Tid1 negatively regulates the migratory potential of cancer cells by inhibiting the production of interleukin-8. Cancer Res. 65:8784–8791. 2005. View Article : Google Scholar : PubMed/NCBI | |
Luca M, Huang S, Gershenwald JE, Singh RK, Reich R and Bar-Eli M: Expression of interleukin-8 by human melanoma cells up-regulates MMP-2 activity and increases tumor growth and metastasis. Am J Pathol. 151:1105–1113. 1997.PubMed/NCBI | |
Sheridan C, Kishimoto H, Fuchs RK, Mehrotra S, Bhat-Nakshatri P, Turner CH, Badve R Jr, Goulet S and Nakshatri H: CD44+/CD24- breast cancer cells exhibit enhanced invasive properties: An early step necessary for metastasis. Breast Cancer Res. 8:R592006. View Article : Google Scholar : PubMed/NCBI | |
Haro A, Yano T, Kohno M, Yoshida T, Koga T, Okamoto T, Takenoyama M and Maehara Y: Expression of Brachyury gene is a significant prognostic factor for primary lung carcinoma. Ann Surg Oncol. 20 Suppl 3:S509–S516. 2013. View Article : Google Scholar : PubMed/NCBI | |
Choi J, Song N, Han S, Chung S, Sung H, Lee JY, Jung S, Park SK, Yoo KY, Han W, et al: The associations between immunity-related genes and breast cancer prognosis in Korean women. PLoS One. 9:e1035932014. View Article : Google Scholar : PubMed/NCBI | |
Hanker LC, Rody A, Holtrich U, Pusztai L, Ruckhaeberle E, Liedtke C, Ahr A, Heinrich TM, Sänger N, Becker S and Karn T: Prognostic evaluation of the B cell/IL-8 metagene in different intrinsic breast cancer subtypes. Breast Cancer Res Treat. 137:407–16. 2013. View Article : Google Scholar : PubMed/NCBI | |
Reitter EM, Ay C, Kaider A, Pirker R, Zielinski C, Zlabinger G and Pabinger I: Interleukin levels and their potential association with venous thromboembolism and survival in cancer patients. Clin Exp Immunol. 177:253–260. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Wu X, Zhang J, Chen Y, Xu J, Xia X, He S, Qiang F, Li A, Shu Y, et al: CHIP functions as a novel suppressor of tumour angiogenesis with prognostic significance in human gastric cancer. Gut. 62:496–508. 2013. View Article : Google Scholar : PubMed/NCBI | |
Manna S, Singha B, Phyo SA, Gatla HR, Chang TP, Sanacora S, Ramaswami S and Vancurova I: Proteasome inhibition by bortezomib increases IL-8 expression in androgen-independent prostate cancer cells: The role of IKKα. J Immunol. 191:2837–2846. 2013. View Article : Google Scholar : PubMed/NCBI | |
Han J, Bae SY, Oh SJ, Lee J, Lee JH, Lee HC, Lee SK, Kil WH, Kim SW, Nam SJ, et al: Zerumbone suppresses IL-1β-induced cell migration and invasion by inhibiting IL-8 and MMP-3 expression in human triple-negative breast cancer cells. Phytother Res. 28:1654–1660. 2014. View Article : Google Scholar : PubMed/NCBI | |
Epanchintsev A, Shyamsunder P, Verma RS and Lyakhovich A: IL-6, IL-8, MMP-2, MMP-9 are overexpressed in Fanconi anemia cells through a NF-κB/TNF-α dependent mechanism. Mol Carcinog. 54:1686–1699. 2015. View Article : Google Scholar : PubMed/NCBI | |
Dong P, Xiong Y, Watari H, Hanley SJ, Konno Y, Ihira K, Yamada T, Kudo M, Yue J and Sakuragi N: MiR-137 and miR-34a directly target Snail and inhibit EMT, invasion and sphere-forming ability of ovarian cancer cells. J Exp Clin Cancer Res. 35:1322016. View Article : Google Scholar : PubMed/NCBI | |
Meng J, Zhang XT, Liu XL, Fan L, Li C, Sun Y, Liang XH, Wang JB, Mei QB, Zhang F and Zhang T: WSTF promotes proliferation and invasion of lung cancer cells by inducing EMT via PI3K/Akt and IL-6/STAT3 signaling pathways. Cell Signal. 28:1673–1682. 2016. View Article : Google Scholar : PubMed/NCBI | |
Huang T, Chen Z and Fang L: Curcumin inhibits LPS-induced EMT through downregulation of NF-κB-snail signaling in breast cancer cells. Oncol Rep. 29:117–124. 2013.PubMed/NCBI | |
Zhang Z, Chen H, Xu C, Song L, Huang L, Lai Y, Wang Y, Chen H, Gu D, Ren L and Yao Q: Curcumin inhibits tumor epithelial-mesenchymal transition by downregulating the Wnt signaling pathway and upregulating NKD2 expression in colon cancer cells. Oncol Rep. 35:2615–2623. 2016.PubMed/NCBI |